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ABSTRACT
Summary: We present a general purpose implementation of
variable length Markov models. Contrary to fixed order Markov
models, these models are not restricted to a predefined
uniform depth. Rather, by examining the training data, a
model is constructed that fits higher order Markov depend-
encies where such contexts exist, while using lower order
Markov dependencies elsewhere. As both theoretical and
experimental results show, these models are capable of cap-
turing rich signals from a modest amount of training data,
without the use of hidden states.
Availability: The source code is freely available at
http://www.soe.ucsc.edu/~jill/src/
Contact: jill@soe.ucsc.edu

INTRODUCTION
Clustering sequences of discrete, or quantized values into
groups of related sequences is of great importance in
bioinformatics. Relevant data ranges from macromolecular
composition, through gene expression time series measure-
ments, to observed transcription factor binding site or protein
domain combinations. One way of quantifying the notion of
relatedness is to obtain a training set of examples from a group
of interest, and fit these with a generative probabilistic model
that captures statistical correlations shared by the sequences
in the set. Then, whenever the trained model M is presented
with a novel query sequence s = s1, . . . , sl , it assigns to it
a score, the probability that M would emit s out of all pos-
sible sequences of the same length. Subsequently, we can set
a threshold above which a novel sequence is considered to be
related to the training set, we can compare the predictions of
two or more such models for multi-classification purposes, or
we can search for high-scoring sequence segments that parse
a given query sequence into one or more known elements.

Using the chain rule we cast this computation into a series
of estimates of the next symbol in the query sequence, given
its past

P(s) = P(s1)

l∏

i=2

P(si | s1, . . . , si−1).

An order-d Markov chain models the future of a partial
sequence from its immediate past, approximating

P(si | s1, . . . , si−1) ≈ PM(si | si−d , . . . , si−1).

Such models are often used in bioinformatics to capture
relatively simple sequence patterns, such as genomic CpG
islands, or serve as background distributions for more com-
plex signals (Durbin et al., 1998, Ch. 3). The complex signals
are often modeled using hidden Markov models (HMMs),
which introduce additional hidden (unobservable) states that
replace the context altogether. A major reason for not using
Markov chains to model these signals lies with the fact that
the memory and training set size requirements of an order-d
Markov chain grow exponentially with d. As a result, while
low order Markov chains are poor classifiers, higher order
chains are often impractical to implement or train.

However, this approach overlooks an intermediate class
of variable length Markov models (VMM), which offer the
ability to capture statistical correlations of different length
scales in a single probabilistic model. Rather than estimating
all contexts of length d, C = ∑d , the VMM models a selec-
ted set of contexts of different lengths, C ⊂ ∑∗. The chosen
context set C is determined by the training data, and includes
longer contexts where these appear in the data and shorter
contexts elsewhere. Prediction using such a model matches
the longest memorized context at every point in the query
sequence,

P(si | s1, . . . , si−1)≈PM(si | max
di≥0

si−di
, . . . , si−1 ∈C). (1)

This context selection scheme avoids the exponential explo-
sion of higher order Markov chains altogether. Furthermore,
theoretical evidence shows that it is much less demanding than
HMMs in terms of data abundance and quality (Ron et al.,
1996), deeming the VMM attractive even in cases where hid-
den states may appeal as encoding some underlying biological
process, such as the ‘ancestral’ sequence in profile HMMs.

Due to space limitations we cannot elaborate on context
selection and refer the reader to a detailed introduction in a
bioinformatic context given by Bejerano and Yona (2001).
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Fig. 1. Models found in directory example/. (left) A PST over the binary alphabet generated from the training sequence above. Landscape
mode makes Equation 1 predictions easier to follow. Node labels represent VMM contexts. The empty context is marked e. Each node is
associated with a vector that holds its predictions for {0, 1} respectively. For example, the probability to observe 1 after a subsequence whose
longest learned context is 00, is 4/5. The dashed node is added to the PST only for generating the equivalent PFA (right). As such it inherits
its parent prediction vector. Both models assign the same probability to any given sequence, e.g. PM(1010) = 14/27 · 7/13 · 8/13 · 1/3. Bold
PFA nodes form its ergodic part whose stationary distribution we also compute.

DESCRIPTION
We report here on a general purpose software package that
implements VMMs over a user defined alphabet, utilizing a
data structure termed probabilistic suffix tree (PST) to hold a
set of chosen contexts (or suffixes) together compactly with
their prediction vectors. Four main modules are implemented:

train: Train a VMM from a given training set. The output is a
PST model. Both algorithms from (Bejerano and Yona, 2001)
are implemented, as well as incremental tree growing.

predict: Generates a likelihood score, symbol by symbol, for
a given query sequence, and a PST model, using Equation 1.
Prediction depth at every step, di , is also reported, as it is also
a good indicator of query sequence similarity to model.

emit: Stochastic generation of a sequence of symbols from a
given PST model, useful for synthetic data generation.

2pfa: Converts a given PST into an equivalent probabilistic
finite automaton (PFA). The conversion corrects (Ron et al.,
1996), whereas the PFA nodes are the union of all PST nodes
(not just leaves, as is stated there) together with all PST leaf
prefixes and their parent nodes. Figure 1 shows an example
of a PST model and its equivalent PFA. The PFA station-
ary distribution is also derived, allowing one to compute the

relative abundance of different short subsequences in a typical
sequence, e.g. for novel binding site detection.

A detailed discussion of these models, as well as applica-
tions, extensions and related approaches, such as context tree
weighting and prediction by partial matching are found in
(Bejerano, 2003).
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