
Vol. 22 no. 17 2006, pages 2158–2159

doi:10.1093/bioinformatics/btl357BIOINFORMATICS APPLICATIONS NOTE

Sequence analysis

Branch and bound computation of exact p-values
Gill Bejerano
Center for Biomolecular Science and Engineering, School of Engineering, 1156 High Street,
University of California, Santa Cruz, CA 95064, USA

Received on December 27, 2006; revised on June 23, 2006; accepted on June 24, 2006

Advance Access publication August 7, 2006

Associate Editor: Alex Bateman

ABSTRACT

Summary: P-value computation is often used in bioinformatics to

quantify the surprise, or significance, associated with a given obser-

vation. An implementation is provided that computes the exact p-value

associated with any observed sample, against a null multinomial dis-

tribution, using the likelihood-ratio statistic. The efficient branch and

bound code, far exceeding the full enumeration implemented by

commercial packages, is especially useful with small sample, sparse

data and rare events, common scenarios in bioinformatics, where

approximations are often inaccurate and inappropriate. This code

base can also be adapted to compute exact p-values of other statistics

in diverse sampling scenarios.

Availability: Freely available at http://www.soe.ucsc.edu/~jill/src/

Contact: jill@soe.ucsc.edujill

INTRODUCTION

Bioinformatics is largely an exploratory science. A routine question

that comes up over and over again in the context of data exploration

is how surprising, or significant, an observation we make about

some given data really is. One way to formalize this question is

to describe the data using a probabilistic model Q. For a given

sample T we ask how unexpected T is, assuming it was drawn

from the probabilistic model Q. To quantify the answer, we can

define a test statistic D, which measures how dissimilar any given

sample T is from our expectation under the model Q. Formally,

D : T ! R is a function from every possible sample outcome T to a

non-negative real number. The larger D(T) the more different the

observed sample T is from a sample we expect to obtain from Q. In
this scenario, the p-value of a sample T is the chance probability of

seeing samples as surprising as T under the null model Q. When the

sample space is finite, this amounts to the following:

p-value ¼
X
T0s:t:

DðT0Þ�DðTÞ

PQðT0Þ‚ ð1Þ

where PQ(T) is the probability to draw sample T from model Q.
While desirable, in practice the sample space over which this sum

has to be performed is often too large. Other times the actual terms

we want to sum are close to machine accuracy, or much smaller than

the already accumulated partial sum, resulting in loss of accuracy of

the obtained result.

With the advent of ever growing computational power, much

algorithmic and numerical research evolved to allow an accurate

estimation of exact p-values [surveyed in Agresti (2001)]. In

Bejerano et al. (2004) we recently introduced a generic branch

and bound approach to efficiently compute Equation (1). Here I

provide an implementation that successfully applies this methodo-

logy to compute a specific p-value more rapidly, more accurately,

and over a broader range of cases than is possible using the explicit

summation of Equation (1), currently implemented by commercial

packages.

METHODS

The provided implementation computes the exact p-value of the following

scenario: Q ¼ (q1, q2, . . . , qnk) is a multinomial distribution over a finite set

of k possible outcomes. T ¼ (n1, n2,. . . , nk) is a sample of size n ¼
Pk

i¼1 ni
over the k categories. In this sample, the i-th category appears ni times. The

statistic D used to measure how dissimilar sample T is from the expected

sample governed by Q is the likelihood ratio statistic:

DðTÞ ¼ 2
Xk
i¼1

ni log
n

nqi

This sum is zero iff 8i, ni ¼ nqi, which is the most probable result

(up to fractions) when drawing a sample according to distribution Q. In

all other cases this sum is positive, growing larger the more unlikely T is

according to Q.
In order to span the search space of all possible samples of size n, a

standard recursive procedure is used to unfold the assignment tree of

Figure 1a. The set of all
�
nþ k � 1

n

�
possible assignments makes up the

leaves of this tree. Internal nodes of the tree hold partial assignments of the

form t ¼ (n1, . . . , ni�1,—, . . . ,—), where n1, . . . , ni�1 have already been

assigned, while categories i through k await assignment of the remainder

�nn ¼ n �
Pi�1

j¼1 nj counts. Let [t] denote all the leaves in the subtree rooted in

the node labeled t. Equivalently, this is the set of all valid assignments

that can be completed from t. The key to performing branch and bound

computation on this tree lies in defining two functions, Dmin, Dmax : t ! R

such that

8t‚T 2 ½t� DminðtÞ � DðTÞ � DmaxðtÞ:

In Bejerano et al. (2004), Lemma 1 we provide two such closed formulas,

and show that as a function of assigning the next category ni with a count

between 0 and �nn, they obtain the shapes shown in Figure 1b. We can now

take advantage of this knowledge by intersecting the two curves with the

threshold D(T) from Equation (1). This divides the range f0‚1‚ . . . ‚�nng into

up to five distinct regions. We find these regions efficiently using binary

searches, and then proceed to treat each region appropriately—the recursion

descends only into nodes whereD(T0) may be either above or belowD(T); we

discard internal nodes where D(T0) will invariably be smaller than D(T);
and we sum up the probability of the appropriate subtrees where D(T0) will
invariably be at least as large asD(T). By pruning or summing internal nodes

we drastically reduce the search space actually traversed. By computing the

2158 � The Author 2006. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

http://www.soe.ucsc.edu/~jill/src/

probability of an entire subtree PQ(t) directly, without enumerating all

assignments T 2 [t] we also increase the accuracy of the computation by

avoiding small quotients and imbalanced summations. In Bejerano et al.

(2004) we demonstrate the speed-up and accuracy gain obtained by this

approach, and show that it is particularly efficient in small sample, sparse

null hypotheses and rare events, all common scenarios in bioinformatics.

DESCRIPTION

The tarball contains the C++ source code, and a readme file that

describes how to configure, compile and run it. When invoked the

user is asked to enter the number of categories k, the null multi-

nomial distribution Q and an observed sample T from which n and

D(T) are computed. Alternatively the user can input n,D(T) directly.
The user can then choose to compute the p-value in one of five ways:

� Asymptotic x2 approximation.

� Full enumeration of Equation (1).

� Recursive branch and bound computation.

� Branch and bound coupled with binary search speed up.

� Monte Carlo simulation.

When performing an exact computation the user is asked to

specify a permutation p over the k categories, such that when

assigning them, instead of assigning n1 first, then n2, etc. as in

Figure 1a, one first assigns np(1), then np(2), etc. Changing the

assignment order changes how the sample space is unfolded,

which for the branch and bound alternatives means that different

subtrees are examined and resolved for different permutations.

When coupled with the binary searches, it appears empirically

that the best assignment order is the one that orders the qi’s in

ascending order. In this case, the implementation recommends

this permutation but does not enforce it. While greatly reducing

the actual search space, runtime complexity does remain exponen-

tial in k (Bejerano et al., 2004) Thus, exact computation is mostly

adequate for small values of k and small to moderate values of n.

Two additional speed-ups that may have an adverse affect on accu-

racy are offered as configuration options (see the readme file):

replacing actual log/exp operations with a look-up table of selected

values, and linear interpolation between them; and allowing, instead

of adding subtrees in Figure 1b, to add the probability of the father

node, and subtract from it the complementary subset of subtrees,

when this results in performing less arithmetic operations overall.

The resulting p-value, as well as additional parameters of the com-

putation, are outputted both in the form of a table row, and as more

detailed untabulated free text (sent to cout and cerr, respectively).

As discussed in (Bejerano et al., 2004), and illustrated in

Figure 1c, the implementation is valuable in computing the exact

likelihood-ratio p-value in different bioinformatic scenarios. The

code base serves as an ideal starting point to expand into other

test statistics, such as Pearson’s X2, and all other statistics of the

Cressie-Read family (Read and Cressie, 1988). It is also readily

extensible to many other hypothesis tests where the sample space

can be traversed in a similar fashion.

ACKNOWLEDGEMENTS

G.B. performed parts of this work at theHebrew university, where he

was supported by a grant from the ministry of science, Israel.

Conflict of Interest. none declared.

REFERENCES

Agresti,A. (2001) Exact inference for categorical data: recent advances and continuing

controversies. Stat. Med., 20, 2709–2722.

Bejerano,G. et al. (2004) Efficient exact p-value computation for small sample, sparse,

and surprising categorical data. J. Comput. Biol., 11, 867–886.

Rahmann,S. (2003) Dynamic programming algorithms for two statistical problems in

computational biology. Lecture Notes Comp. Sci., 2812, 151–164.

Read,T.R.C. and Cressie,N.A.C. (1988) Goodness-of-Fit Statistics for Discrete

Multivariate Data. Springer-Verlag, New York.

assign n
1

(0, 0, ..., –)

(0, –, ..., –) (1, –, ..., –)

(0,n, ..., –) (1,0, ..., –) (1, n–1, ..., –)

(0, n, ..., 0)

. . .

. . . (1, n–1, ..., 0) (n, 0, ..., 0)

(n, 0, ..., –)

(n, –, ..., –)

... ...

(0, 0, ..., n)

assign n
2

. . .

(–, –, ..., –)

. . .

n

Dmin

D(T)

Dmax

D(T’)

D

ni

discarddescend add

ad
d

de
sc

en
d

0 α β γ δ

(a)

(b)
(c)

column exact p-val χ2 error

1,3,5,13 0.354 +33.98%
2 0.481 +21.26%
4 2.56e-4 -24.90%

6,9 0.136 +48.17%
7,8,10 1.53e-5 -3.49%

11 0.596 +5.34%
12 0.654 -9.36%
14 0.027 +18.85%

Fig. 1. Branch and bound exact p-value computation. (a) To compute the p-value of a sample T, using statisticD, according to Equation (1), we first decompose

the sample space using partial assignments. The implementation recursively makes all allowed assignments of remaining counts to categories 1 through k. (b) At

each internal node, corresponding to a partial assignment, the lower and upper bounds on the likelihood statistic Dmin, Dmax are both convex as a function of

assigning to the next category ni between 0 and themaximal allowed value of all remaining counts, �nn. Binary searches are used to findwhere these curves intersect
the D(T) threshold. Subtrees entirely above the threshold are added as a whole to the cumulative sum, subtrees that are completely below it are discarded, and

ambiguous nodes are descended to facilitate further refinement. Note that different configurations ofDmin,Dmax andD(T) induce a smaller number of partitions.

(c) To illustrate the difference between the exact p-value and its asymptotic approximation in a bioinformatic context, both are computed in the context of the

p-value logo (Rahmann, 2003) of an arbitrary Transfac 8.3 matrix (M00044). [a,b modified from Bejerano et al., 2004]

Branch and bound computation of exact p-values

2159

