
JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 7, Numbers 3/4, 2000
Mary Ann Liebert, Inc.
Pp. 381–393

Optimal Amnesic Probabilistic Automata or
How to Learn and Classify Proteins in

Linear Time and Space

ALBERTO APOSTOLICO1 and GILL BEJERANO2

ABSTRACT

Statistical modeling of sequences is a central paradigm of machine learning that � nds mul-
tiple uses in computational molecular biology and many other domains. The probabilistic
automata typically built in these contexts are subtended by uniform, � xed-memory Markov
models. In practice, such automata tend to be unnecessarily bulky and computationally im-
posing both during their synthesis and use. Recently, D. Ron, Y. Singer, and N. Tishby built
much more compact, tree-shaped variants of probabilistic automata under the assumption
of an underlying Markov process of variable memory length. These variants, called Prob-
abilistic Suf� x Trees (PSTs) were subsequently adapted by G. Bejerano and G. Yona and
applied successfully to learning and prediction of protein families. The process of learning
the automaton from a given training set of sequences requires 2 worst-case time,
where is the total length of the sequences in and is the length of a longest substring
of to be considered for a candidate state in the automaton. Once the automaton is built,
predicting the likelihood of a query sequence of characters may cost time 2 in the
worst case. The main contribution of this paper is to introduce automata equivalent to PSTs
but having the following properties:

Learning the automaton, for any , takes time.
Prediction of a string of symbols by the automaton takes time.

Along the way, the paper presents an evolving learning scheme and addresses notions of
empirical probability and related ef� cient computation, which is a by-product possibly of
more general interest.

Key words: amnesic automata, probabilistic suf� x trees, variable memory Markovian models,
protein families, protein classi� cation.

1Department of Computer Sciences, Purdue University, West Lafayette, IN 47907 and Dipartimento di Elettronica
e Informatica, Università di Padova, Padova, Italy.

2School of Computer Science and Engineering, The Hebrew University, Jerusalem 91904, Israel.

381

382 APOSTOLICO AND BEJERANO

1. INTRODUCTION

Probabilistic models of various classes of sources are developed in the context of coding and
compression as well as in machine learning and classi� cation. In the � rst domain, the repetitive

structures of substrings are regarded as redundancies and to be removed. In the second, repeated subpatterns
are unveiled as carriers of information and structure. Source modeling is made hard in practice by the fact
that we do not know the source probabilities, the latter actually being rather � ctitious entities or models.
In fact, one rather pervasive problem is precisely that of learning or estimating these probabilities from the
observed strings. This problem is twofold, and its two components are tightly coupled in practice. From
an information theoretic standpoint, the question is how to de� ne notions of probability and information
relative to a class of sources. Once one such characterization is agreed upon, interesting algorithmic
questions may revolve around the computational cost inherent to the process of learning or estimating
probabilities within the given class (see, e.g., Abe and Warmuth [1992], Apostolico et al. [1999], Apostolico
et al. [1996], Rissanen [1983], Ron et al. [1996] and references therein).

A popular approach to the statistical modeling of sequences relies on the structure of uniform, � xed-
memory Markov models (we refer to, e.g., Forchhammet and Rissanen [1995], Rissanen [1983, 1986] in
the context of predictive and universal codes, and to Bejerano and Yona [1999] and Ron et al. [1996] in
the context of learning and classi� cation). For sequences in important families, such as those arising in
applications that range from natural language to speech, handwriting, and molecular sequence analysis,
the autocorrelation or “memory” exhibited decays exponentially quickly with length. In other words,
there is a maximum length L of the recent history of a sequence above which the empirical probability
distribution of the next symbol given the last L0 > L symbols does not change appreciably. It is possible
and customary to model these sources by Markov chains of order L, which denotes the maximum useful
memory length. Even so, such automata tend in practice to be unnecessarily bulky and computationally
imposing both during their synthesis and use. In Ron et al. (1996) much more compact, tree-shaped variants
of probabilistic automata (called Probabilistic Suf� x Trees, or PSTs) are built which assume an underlying
Markov process of variable memory length not exceeding some maximum L. The probability distribution
generated by these automata is equivalent to that of a Markov chain of order L, but the description of the
automaton itself is much more succinct. The process of learning the automaton from a given training set
S of sequences requires 2.Ln2/ worst-case time, where n is the total length of the sequences in S and L

is the length of a longest substring of S to be considered for a candidate state in the automaton. Once the
automaton is built, predicting the likelihood of a query sequence of m characters may cost time 2.m2/ in
the worst case.

Here, we present automata equivalent to PSTs but having the properties that, on one hand, learning the
automaton takes O.n/ time, regardless of L, and on the other, prediction of a string of m symbols by the
automaton takes O.m/ time. Along the way, we address notions of empirical probability and their ef� cient
computation, possibly a by-product of more general interest.

We adopt de� nitions and notations from Bejerano and Yona (1999) and Ron et al. (1996) with which
some familiarity is assumed. We deal with a (possibly singleton) collection S of strings over a � nite
alphabet 6 and use ¸ to denote the empty string. The length of S is the sum of the lengths of all strings
in it and is denoted by n. With reference to S and a generic string s 5 s1s2 : : : sl , the empirical probability
P̃ of s is de� ned provisionally as the number of times s occurs in S divided by the maximum “possible”
number of such occurrences. The conditional empirical probability of observing the symbol ¾ immediately
after the string s is given by the ratio

P̃ .¾ js/ 5
Âs¾

Âs¤
;

where Âw is the number of occurrences of string w in S and s¤ is every single-symbol extension of s

having an occurrence in S. Finally, suf� x(s) denotes s2s3 : : : sl .
We recall the structure of a PST, as described in Bejerano and Yona (1999) and Ron et al. (1996) (see

Figure 1, recapped from Bejerano and Yona [1999]). In any such tree, each edge is labeled by a symbol,
each node corresponds to a unique string—the one obtained by traveling from that node to the root—and
nodes are weighted by a probability vector giving the distribution over the next symbol. In the following,
T is the PST, S is the set of strings that we want to check or learn, and °s is the probability distribution
over the next symbol associated with node s. The construction starts with a tree consisting of only the
root node (i.e., the tree associated with ¸) and adds paths as follows. For each substring s considered, it is

OPTIMAL AMNESIC PROBABILISTIC AUTOMATA 383

(.2,.2,.2,.2,.2)

root

a

r

ca

rabra

a

r

c

r

b

(.05,.5,.15,.2,.1)

(.05,.4,.05,.4,.1)

(.6,.1,.1,.1,.1)

(.05,.25,.4,.25,.05)(.1,.1,.35,.35,.1)

FIG. 1. An example of a PST over the alphabet 6 5 fa; b; c; d; r g. The vector near each node is the probability
distribution for the next symbol, e.g., the probability to observe c after a substring, whose largest suf� x in the tree is
ra, is 0.4. An exemplary prediction using this PST, denoted T :

P T .abracadabra/ 5 P T .a/ P T .bja/P T .r jab/P T .ajabr/P T .cjabra/P T .ajabrac/ : : : P T .ajabracadabr/

5 ° root .a/ ° a.b/ ° root .r/ ° r .a/ ° bra .c/ ° root .a/ : : : ° r .a/

5 0:2 0:5 0:2 0:6 0:35 0:2 : : : 0:6

checked whether there is some symbol ¾ in the alphabet for which the empirical probability of observing
it after s is both signi� cant and signi� cantly different from the probability of observing it after suf� x(s).
Whenever these conditions hold, the path relative to the substring (and possibly its necessary but currently
missing ancestors) are added to the tree. As detailed below, the time complexity of this construction is
O.Ln2/, where L is the length of a longest string considered for possible inclusion in T .

Given a string, its weighting or prediction by a PST is done by scanning the string one character after
the other while assigning a probability to every character, in succession. The probability of a character
is calculated by walking down the tree in search of the longest suf� x that appears in the tree and ends
immediately before that character; the corresponding conditional probability is then used in calculating the
product for all characters (see Figure 1). Since, following each input symbol, the search for the deepest
node must be resumed from the root, this process cannot be carried out on-line or in linear-time in the
length of the tested sequence, the worst-case time being in fact 2.m2/ for a sequence of m characters.
In Ron et al. (1996, Appendix B) a solution is offered to this issue: a procedure is given to turn the PST
into an equivalent and not-much-larger Probabilistic Finite Automaton (PFA) on which every prediction
step does take constant time (is equal to a single transition on the PFA). However, this procedure may, by
itself, cost 2.Ln2/ time in the worst case.

In Bejerano and Yona (1999), and later, more extensively, in Bejerano and Yona (2000), the PST learning
scheme is evaluated in the context of protein family modeling and classi� cation, against an early version
of the Pfam database (Bateman et al., 2000). We brie� y recount the results of this evaluation. The Pfam
database uses expert knowledge and supervision along with multiple sequence alignments to train HMM
models for families of related proteins. In Bejerano and Yona (2000), 170 such families, ranging from
884 to 10 members, were split randomly into a training and a test set in ratio 4 to 1. It was then shown,
as a proof of principle, that in a fully automatic manner, without the use of multiple alignments, using
a uniform set of parameters for all PST models, the PSTs were able to detect overall nearly 91% of all
true positives. In several cases, they have even out performed the HMM models hand crafted for these
families.1 In Figure 2 we recount the results for a typical PST, taken from Bejerano and Yona (1999).

2. LEARNING AUTOMATA IN LINEAR TIME

The PST learning algorithm given below reproduces for our convenience the construction of the tree
from Bejerano and Yona (1999).

1This is possible as an HMM is sometimes forced to accommodate sequences known to belong to its related family
of proteins by the expert growing it, even though those proteins may not be well recognized by the model itself.

384 APOSTOLICO AND BEJERANO

0 100 200 300 400 500 600 700
0

500

1000

1500

cluster #33 PST (v1.0)
(sizes: train 110 test 28 (20%) others 52067 avg. train str len 476.6)

string length
<PST: 15485 pot nodes 6747 (44%) nodes 3539 leaves 1.91 nodes per leave>

(params = " 0.0001 0 0.001 1.05 20 " 1/5 –1)

–
lo

g1
0(

lik
e

lih
oo

d)

FIG. 2. Typical performance of a protein family PST, here of the neurotransmitter-gated ion-channels. Symbol “o”
denotes training set samples, “x” denotes test set samples, and “1 ” denotes unrelated protein sequences, on a plot of
protein sequence length vs. the score it has been assigned by a PST model trained only on the “o”s. One clearly sees
that the model has generalized from the samples it has been shown, to “capture” the “x”s. The evaluation was done
against the Swissprot database (Bairoch and Apweiler 2000), containing all protein sequences known at the time.

PST Learning Algorithm

1. Initialization: let T consist of a single node corresponding to ¸,
and let S ¬ f¾ j¾ 2 6 and P̃ .¾/ ¶ Pming.

2. Building the skeleton: While S 65 Á, pick any s 2 S and do
° (A) Remove s from S;
° (B) if there is a symbol ¾ 2 6 such that:

(Part I:) P̃ .¾ js/ ¶ .1 1 ®/°min;

and

(Part II:) (1)
P̃ .¾ js/

P̃ .¾ jsuf� x.s//
¶ r

or

(2)
P̃ .¾ js/

P̃ .¾ jsuf� x.s//
µ 1=r;

then add to T the node corresponding to s and all the nodes on the path to s from the deepest
node in T that is a suf� x of s;

° (C) If jsj < L then for every ¾ 0 2 6, if

P̃ .¾ 0 s/ ¶ Pmin;

then add ¾ 0 s to S.
3. Smoothing the prediction probabilities:

For each s labeling a node in T , let ° s.¾ / 5 P̃ .¾ js/.1 ¡ j6j°min/ 1 °min.

This is a rescheduling of the algorithm of Ron et al. (1996), which is equivalent for our purposes and
thus will not be reproduced. Here, L is, again, the maximum length for a string to be considered, Pmin is
the minimum value of the empirical probability in order for the string to be considered, r .> 1/ measures

OPTIMAL AMNESIC PROBABILISTIC AUTOMATA 385

the multiplicative prediction difference between the candidate and its father for any given character, while ®

and °min limit the minimal empirical probability for a particular character to be of interest. The parameter
°min is also used as the smoothing factor at the last stage of the construction.

We are interested primarily in the asymptotic complexity of the main part (tree construction) of the
procedure and in possible ways to improve it. The last steps of smoothing probabilities have no substantial
bearing on the performance and no consequence on our considerations. We see that the body of the
algorithm consists of checking all substrings having empirical probability at least Pmin and length at most
L. Although the number of substrings passing these tests may be smaller in practice, there are in principle
n ¡ l 1 1 possible different strings for each l, which would lead to 2.Ln2/ time just to compute and test
empirical probabilities (nL strings in total each requiring at least 2.n/work to test). The discussion that
follows shows that, in fact, overall O.n/ time suf� ces.

Our approach must depart considerably from the algorithm of the � gure. There, word selection and
tree construction go hand in hand in Steps B and C. In our case, even though in the end the two can be
recombined, we decouple these tasks. We concentrate on word selection, hence on the tests of Step B.
Essentially, we want to show that all those words can be tested in overall linear time, even if those word
lengths may add up to more than linear space. For simplicity of exposition we assume henceforth that S

consists of only one string, which will be denoted by x.

2.1. Computing conditional probabilities and ratios thereof

A synopsis of tests on conditional probabilities is given in Figure 3. The goal of this subsection is to
establish the following.

Lemma 2.1. There is an algorithm to perform the collection of all tests under Step B for all substrings
of S in overall linear time and space.

Notice that S may contain 2.n2/ distinct strings as substrings. Thus, there are two quali� cations to
the lemma: one is to show that computation can be limited to O.n/ words, the other is that this can be
achieved in overall linear time and space. We now begin with the proof of the lemma.

Given two words x and y, the start-set of y in x is the set of occurrences of y in x, i.e., posx.y/ 5
fi : y 5 xi : : : xj g for some i and j , 1 µ i µ j µ n. Two strings y and z are equivalent on x if
posx.y/ 5 posx.z/. The equivalence relation instituted in this way, denoted by ²x , partitions the set of all
strings over 6 into equivalence classes. We use C.w/ to denote the equivalence class of w with respect
to x. In the string x 5 abaababaabaababaababa, for instance, fab; abag forms one such C-class and so
does fabaa; abaab; abaabag. Recall that the index of an equivalence relation is the number of equivalence
classes in it. The following important “left-context” property is adapted from Blumer et al. (1985).

Fact 2.2. The index k of the equivalence relation ²x obeys k µ 2n.

Proof. For any two substrings y and w of x, if posx.w/ \ posx.y/ is not empty then y is a pre� x
of w or vice versa (i.e., .C.y/ ³ C.w/ or vice versa). If x is extended by appending to it a symbol not
appearing anywhere else, then the containment relation on subsets of the form posx forms a tree with
jxj 1 1 leaves, each corresponding to a different position, and in which each internal node has degree at
least 2. Therefore, there are at most jx j internal nodes and 2jxj 1 1 nodes, or equivalence classes, in total.
Taking back now the spurious leaf of position .jxj 1 1/ yields the claim.

Locus of suf� x.s/ Locus of s Action for Test I Action for Test II

(1) proper locus º0 proper locus º read weights of locus º use suf� x link from º to º0

(2) middle of an arc proper locus º impossible impossible (see Fact 2.3)
(3) proper locus º0 middle of an arc single possible extension use rsuf from º0 to aux or

surrogate locus of s

(4) middle of an arc middle of an arc irrelevant always fails (see text)

FIG. 3. Synopsis of tests on conditional probabilities.

386 APOSTOLICO AND BEJERANO

Fact 2.2 suggests that we might restrict computation of empirical probabilities to the O.n/ equivalence
classes of ²x . One incarnation of the tree evoked by the above proof—in fact, an alternate proof of its
own—is the suf� x tree Tx associated with x. We assume familiarity of the reader with the structure and
its clever O.n log j6j/ time and linear space constructions such as in McCreight (1976), Ukkonen (1995),
and Weiner (1973). The word ending precisely at vertex ® of Tx is denoted by w.®/. The vertex ® is
called the proper locus of w.®/. The locus of word w is the unique vertex ® of Tx such that w is a pre� x
of w.®/ and w.Father.®// is a proper pre� x of w. One key element in the above constructions is in the
following simple fact:

Fact 2.3. If w 5 av, a 2 6, has a proper locus in Tx , then so does v.

To exploit this fact, suf� x links are maintained in the tree that lead from the locus of each string av

to the locus of its suf� x v. Here we are interested in Fact 2.3 only for future reference. Having built
the tree, some simple additional manipulations make it possible to count and locate the distinct (possibly
overlapping) instances of any pattern w in x in O.jwj/ steps.

Consider now conditional empirical probabilities, which were de� ned as the ratio between the observed
occurrences of s¾ to the occurrences of s¤. The � rst observation is that the value of this ratio persists
along each arc of the Tx , i.e.,

P̃ .¾ js/ 5 Âs=Âs¾ 5 1

for any word s ending in the middle of an arc of Tx and followed there by a symbol ¾ . Therefore, we
know that every such word passes the � rst test under .B/, while continuation of s by any other symbol
would have zero probability and thus fail. These words s have then some sort of an obvious implicit vector
and need not be tested or considered explicitly. On the other hand, whenever both s and suf� x(s) end in
the middle of an arc, the ratio is

P̃ .¾ js/

P̃ .¾ jsuf� x.s//
5

1

1
5 1:

Since r > 1, then neither r nor 1=r may be equal to 1, so that no such word passes either part of the
second test under B . The fate of any such word with respect to inclusion in a PST (when also in the � nal
version of our tree) would depend thus on that of its shortest extension with a proper locus in it. The cases
where both s and suf� x(s) have a proper locus in Tx are easy to handle, as there is only O.n/ of them and
the corresponding tests take linear time overall. By Fact 2.3, it is not possible that s has a proper locus
while suf� x(s) does not. Therefore, we are left with those cases where a proper locus exists for suf� x(s)
but not for s. There are still only O.n/ such cases of course, but in order to handle them we need � rst to
perform a slight expansion on Tx .

Let º 0 be the proper locus of string s 0. We de� ne rsuf.º0; ½/ to be the node º, which is the proper
locus of the shortest extension of ½s0 having a proper locus in Tx . In other words, node º has the property
that w.º/ 5 sz with s 5 ½s 0 and z as short as possible if z 65 ¸ (see Figure 4a). If ½s 0 has no occurrence
in x then rsuf.º0; ½/ is not de� ned.

Clearly, rsuf coincides with the reverse of the suf� x link whenever the latter is de� ned. When no such
original suf� x link is de� ned while ½s 0 occurs in x, then rsuf takes us to the locus of the shortest word
in the form ½s 0z. Since º 0 is a branching node, then there are occurrences of s 0 in x that are not followed

FIG. 4. Creating auxiliary suf� x links. See text for details.

OPTIMAL AMNESIC PROBABILISTIC AUTOMATA 387

by the � rst character of z. In other words, not all occurrences of s 0 occur precisely at the second position
of an occurrence of sz 5 ½s 0z, when posx.½s 0/ 65 posx.½s 0z/. In these cases, we know a priori that
P̃ .¾ js/ 5 1 only for ¾ equal to the � rst character of z, but the value of P̃ .¾ js 0/ and hence also of the
ratio P̃ .¾ js/=P̃ .¾ js0/ have to be computed and tested explicitly. We can do so by treating º as a surrogate
locus of that of s 5 ½s0, but it is more convenient for our discussion to add to Tx explicit unary nodes
for this purpose. Thus, a special unary node º 00 is created as the proper locus of ½s 0 and endowed with a
suf� x link directed toward º 0 (see Fig. 4b). It should be clear that the total number of such auxiliary nodes
in our tree is bounded by nj6j, and hence is linear for � nite alphabets. Figure 3 summarizes the possible
cases and their respective treatments.

Expanding Tx and computing rsuf’s is an easy linear postprocessing of the tree. We have also seen that
attaching empirical conditional probabilities only to the branching nodes of Tx suf� ces. As there are O.n/

such nodes and the alphabet is � nite, the collection of all conditional probability vectors for all subwords
of x takes only linear space. Given Tx , the computation of such probabilities is trivially done in linear
time. With reference to Figure 3, the only tests to be taken are of type (1) and (3), and there are O.nj6j/
such tests of each kind, both associated with the nodes of the tree. Speci� cally, there are j6j comparisons
at the nodes º and º 0 under (1) and j6j possible extensions of the words s 0 associated with nodes º 0 under
(3).

This concludes the proof of Lemma 2.1.

2.2. Building the new amnesic automaton

At this point we can already outline an O.nj6j/ procedure by which words are selected for inclusion
in our automaton and the automaton itself is built.

1. Substrate preparation: Build a compact suf� x tree Tx for x. Add auxiliary unary nodes as described.
2. Word selection: Determine the words to be included in S and thus in the � nal automaton. For this,

visit the nodes of Tx bottom up, compute Â -counts and conditional probabilities, and run the tests of
Step B on these nodes. Mark the root and all nodes passing the test. For every node marked, follow
the path of suf� x links to the root and mark all nodes on this path currently unmarked.

3. Tree pruning: Visit the tree in some bottom-up order, and prune the tree cutting all edges immediately
below every deepest unmarked node.

In practice, the operations above would be more suitably arranged and combined without this affecting
their global complexity. Let H denote the pruned version of Tx resulting from this treatment. As is easily
seen, the set of words having proper loci at a marked node of H contains that of the words associated with
the nodes of the PST resulting from the PST learning algorithm. In particular, the marking of all nodes
on the suf� x path of a marked node corresponds to admitting into the tree all suf� xes of every admitted
word.

Fact 2.4. If word w is spelled out on some path from a node to the root of the PST T , then w has a
marked proper locus in H.

This fact shows just how the PST T is embedded in H: to extract T from H, take the marked nodes of
H and the rsufs edges connecting these nodes and then possibly prune some fringes at the bottom of the
tree thus obtained. Any marked node v in H that does not appear in T corresponds to a node that the PST
algorithm would have inserted had it gotten to it (or to a marked descendant of it). However, due to the
top-down nature of the PST algorithm combined with a possibly nonmonotone notion of P̃ , if any node
along the rsuf path of v fails test C (even though v itself passes it), node v would never be examined
by the PST algorithm.2 One might argue that these nodes should have also been included in T and hence

2Note, for example, that the notion of P̃ we use is nonmonotone, i.e., there may be w 2 6? and ¾ 2 6 s.t.
P̃ .w/ < P̃ .¾ w/. Consider the case where 6 5 fa; bg and x 5 baabaa. A simple calculation shows that 0:4 5
P̃ .aa/ < P̃ .baa/ 5 0:5. This means that if the threshold in Test C is set to 0.45 the node corresponding to baa will
not be examined for inclusion in T , because its father node, corresponding to aa, will fail to pass test C. However, as
H prunes bottom-up, it will encounter the node corresponding to baa. This node may very well pass test B, and as a
result both it and its father will be included in H .

388 APOSTOLICO AND BEJERANO

must stay, or modify the pruning of Tx so that these nodes are excluded from H as well (this requires one
walk on rsufs). Yet another alternative is to defer the tests of Step C to the weighting phase, in which
they may be performed on the � y, where desired, without this affecting the time complexity of that phase.
This issue shall be further discussed in Section 5.

Essentially, H is a compact trie resembling the basic structure of a multiple pattern matching machine
(MPMM) (Aho and Corasick, 1975). The import of this is that, on such a machine, substrings undergoing
tests are scanned in the forward, rather than reverse, direction while traveling on paths that go from the
root to the leaves of the automaton. The full-� edged structure of MPMMs, with failure-function links,
etc., ensures that, while the input string is scanned symbol after symbol, we are always at the node of
the MPMM that corresponds to the longest suf� x of the input having a node in the MPMM. Also, by
the structure of MPMMs, running a string through it always takes overall linear time in the length of the
string. However, our MPMM is nonstandard in that explicit nodes (and associated failure pointers) might
be missing along the arcs of Tx . The total number of such nodes might amount to 2.n2/ in the worst
case. One might consider adding such nodes on the � y during prediction at a cost of constant time per
character and charge the predicted sequence(s) with the corresponding O.m/ work. In the next section, we
study means of surrogating the missing nodes and links within the O.n/ time allocated to learning. We
conclude this section by recording the following

Theorem 2.5. The probabilistic automaton H contains T and all the information stored in T and can
be learned in linear time and space.

3. IMPLEMENTING LINEAR TIME PREDICTORS

In this section, we assume we are given a pruned tree H with its nodes suitably weighted and marked,
and we tackle the problem of how to use this tree for prediction. We consider two different scenarios for
prediction, depending on whether the string s is assumed to be fed to H one character at a time from left
to right or backward, beginning with the last character. We � rst sketch our treatment of the � rst case and
then discuss the second one in full detail.

In a left-to-right scanning, we want to maintain that at the generic step where we have read the pre� x
s1s2 : : : sj ¡ 1 we � nd ourselves at the marked node º of H that is the proper locus for the longest suf� x of
s1s2 : : : sj ¡ 1 among those suf� xes that have a marked proper locus in H.

Let us say that a node ¹ has a direct ¾ -child in H if ¹ has a child node ¹0 reachable through an
edge labeled only by the character ¾ 2 6. Node ¹ is then the direct father of ¹0. Back to the discussion,
our approach distinguishes two cases, depending on whether or not the node º has a direct sj -child. We
consider � rst the case where º does not have a direct sj -child. This is the easier case, as the following
lemma gives the handle for it.

Lemma 3.1. Let w.º/ 5 sf sf 1 1 : : : sj ¡ 1 and w.¹/ 5 sf 0sf 0 1 1 : : : sj be the longest suf� xes of
s1s2 : : : sj ¡ 1 and s1s2 : : : sj , respectively, having a marked proper locus in H. If º has no marked di-
rect sj -child, then f 0 > f .

Proof. The condition f 5 f 0 is impossible, as the only way for this to happen would be if º had
a marked direct sj -child. Since this is denied by hypothesis, then we are left with one of the following
three possibilities: there is an edge to a child º 0 of º labeled by a string that begins with sj but consists
of more than one character; there is no edge from º whose label begins by sj altogether; º had a direct
sj -child º 0 but º 0 is not marked. For each of these cases, we have to look elsewhere in H than among the
children of º to � nd the deepest possible marked proper locus ¹ of a suf� x of s1s2 : : : sj . Assume now
for a contradiction that we found ¹ such that f > f 0. Since ¹ must be a marked node in H then so must
be by construction all nodes that are proper loci of the suf� xes of w.¹/ 5 sf 0sf 0 1 1 : : : sj . Among these
nodes, we � nd, in particular, the marked proper locus of sf sf 1 1 : : : sj . But then º has a direct sj -child,
which contradicts the hypothesis (see Fig. 5a).

Consider now our second case, in which º has a marked direct sj -child º 0 in H. This case is trivial to
handle whenever º 0 cannot be reached from a marked node through a path of suf� x links labeled by some
suf� x of s1 : : : sf ¡ 1. Indeed, if no such path exists then traversing the edge to º 0 propagates our invariant

OPTIMAL AMNESIC PROBABILISTIC AUTOMATA 389

s
f’

s
j- 1

s
j

s
f

s

j- 1

s
j

v’

v

u

p

q

FIG. 5. Adding direct auxiliary links. (a) If º0 does not exist and yet f > f 0 then the suf� x path p leads us to a
contradiction. (b) Thus, if º0 does not exist, it must be that f < f 0. We wish then to hold a link from º to ¹, the end
point of path q . (c) Finally, if º0 exists, we wish to hold a link from º0 to ¹, the end point of the reverse suf� x path
p ¡ 1. Refer to the text for details.

condition to s1s2 : : : sj , in constant time. If, on the other hand, such a path does exist, then the node on the
longest possible such path is the node ¹ that we are seeking. Note that node ¹ depends on the structure of
s and does not necessarily coincide with the deepest marked node encountered on an rsuf path from º 0.

We now outline the computations involved in prediction when s is fed to H one symbol at a time from
left to right. The cases contemplated in Lemma 3.1 are handled in constant time per symbol if we add to
H links from every marked node and alphabet symbol to the closest node reachable by a number of direct
transitions on suf� x links followed by exactly one transition on a direct downward tree edge (see Fig. 5b).
These links are easy to set in time linear in the size of H.

To handle the case of a marked direct child node º 0 of º, we need to access, on the � y, the deepest
marked node ¹ that is found on a reverse suf� x path from node º 0 above and such that w.¹/ corresponds
to a suf� x of s1s2 : : : sj (see Fig. 5c). This is made possible by a preprocessing on s which consists of
running a multiple pattern matching for the (longest) substrings ending at marked nodes of H. For this,
H itself is suitably adapted (in linear time) in order to be treated as a standard MPMM. The information
collected in this way is used during the weighting stage. Intuitively, we use the tracks left behind by s on
its trail in the MPMM, and this enables us now to locate, in constant time, the deepest rsuf descendant
of º 0 which is compatible with a suf� x of s1s2 : : : sj . The net worth is that now there is one transition to
the appropriate marked node for every symbol of s, when s is weighted in linear time.

Note that H is in compact form so that specifying failure transitions on it while keeping the O.n/ time
and space is not obvious. The details are deferred to a forthcoming paper. In what follows, we concentrate
on the alternative assumption that s is available off-line so that it can be fed backwards to H. Since we
are interested only in the product of all subterms, the order in which they are calculated may be altered at
will. We show a simple and elegant linear time prediction phase that works for this case.

Theorem 3.2. Given the automaton H, there is an algorithm to weight any string s in overall O.jsj/
time.

Proof. We retain the preprocessing that assigns to every node º a pointer to the closest marked node ¹

that can be reached following suf� x links from º (Fig. 5b). The bulk of the algorithm consists of walking
on the rsuf links of H in response to consecutive symbols of sR 5 smsm ¡ 1 : : : s1, making occasional
steps “sideways” along an edge of H. The work is partitioned in batches of operations where each batch
advances our knowledge of the deepest marked nodes for a certain number of suf� xes of sR . Each batch is
associated with a substring of sR and the work it performs is linear in that substring. Consecutive batches
parse sR into consecutive nonoverlapping substrings of sR , when the linear overall bound. Batches are
issued at a subset of the set of positions of sR , and each batch faces a primary task and a maintenance
task. If a batch is invoked in connection with sj sj ¡ 1 : : : s1, the primary task of the batch is to � nd the two
nodes ¹ 5 reach.j / and º 5 mark.j / which correspond, respectively, to the deepest and deepest-marked
node on the path of rsufs from the root that is labeled by a pre� x of sj sj ¡ 1 : : : s1. A by-product of the
primary task is to weight symbol sj . The maintenance task is explained in what follows.

The batch for j starts having being handed a node µ 5 start .j / on the rsuf path for sj sj ¡ 1 : : : s1

(consult Figure 6a). Let sj sj ¡ 1 : : : sh be the word labeling the rsuf path from the root to node µ and

390 APOSTOLICO AND BEJERANO

f-1

f- 1
s

s
f

s
h s

j

s
j’

s
h-1

s
f

s
d

0

0’

u

(a) (b)

s
f

s
h

s
j

s
h- 1

s
f

s

s
d

0

0’

u

s
j’

o
W

FIG. 6. Parsing a batch in backwards mode. The text holds the full details.

consider the path P of original Tx edges that connect the root of H to µ . Prior to inception of this batch,
the following conditions hold.

1. For all suf� xes sksk ¡ 1 : : : s1 with k > j , mark.k/ is already known.
2. Consider the collection of all rsuf paths that are de� ned by walking from the root of H until the

path ends or a node of P is met (each such path being the path or a pre� x of the path to mark.k/

for j ¶ k ¶ h). For k 5 j; j ¡ 1; : : : h, mark.k/ is currently set to the deepest marked node on its
corresponding path.

The work begins at µ by following rsufs while parsing the symbols that follow sh in sR until node
¹ is found. The algorithm climbs to µ 0 5 Father(¹), the father node of ¹, which will be passed on to
the next batch where it will take the place of µ . The string s 5 sh¡ 1sh ¡ 2 : : : sf , connecting µ to ¹, is
the substring of sR contributed by this batch to the parse of sR mentioned above. At this point, we know
the � nal value of mark.j/, as this must be either the deepest node known when the batch began or the
deepest node encountered while scanning s.

As w(Father(¹)) is a pre� x of w.¹/, then the rsuf path from the root to Father(¹) corresponds to
some suf� x sj 0sj 0 ¡ 1 : : : sf of sj sj ¡ 1 : : : sf . The scan beginning at start .j 0/ 5 Father(¹) will map into
a substring sf ¡ 1sf ¡ 2 : : : sd of sR that immediately follows s and thus has no overlap with this string.
Before the new batch at j 0 can begin, however, Invariants 1 and 2 must be restored. We thus address the
maintenance task of the batch.

Let Á be the lowest common ancestor of ¹ and µ in H (consult Figure 6b). The only nodes where the
invariants might have been infringed are those found in the subtree W of H, which is rooted at Á and
has leaves at the nodes encountered on the path of s from µ to ¹. The invariants are restored by visiting
this subtree and checking, for every node in it, whether the pointer to the closest marked node gives an
improvement over the current corresponding value of mark. Application of an argument already used in
Lemma 3.1 to nodes ¹ and Father(¹) shows that, in particular, this treatment propagates Invariant 1 to
all values of k in the interval [j; j 0/, i.e., Invariant 1 now holds for all k > j 0. The number of nodes
encountered in the visit is bounded by jsj, the number of leaves, when the work involved is linear in jsj.

4. COMPUTING EMPIRICAL PROBABILITIES

We consider here, in greater detail, the notion of empirical probability for a string and its related
computations. This notion is not straightforward. Fortunately, in the algorithm—insofar as the construction
of the automaton goes—we are interested primarily in conditional probabilities which turn out to be less
controversial.

One ingredient in the computation of empirical probabilities is the count of occurrences of a string in
another string or set of strings. As was shown, although there can be 2.n2/ distinct substrings in a string
of n symbols, Fact 2.2 and the very structure of Tx show that linear time and space suf� ce to build an
implicit table of Âw counts of all strings w in x.

One way to de� ne the empirical probability P̃ .w/ of w in x is to take the ratio of the count Âw to
jxj ¡ jwj 1 1, where the latter is interpreted as the maximum number of possible starting positions for w

OPTIMAL AMNESIC PROBABILISTIC AUTOMATA 391

in x. This corresponds to viewing P̃ .w/ as Âw divided by Âjwj (i.e., how many of the overall n ¡ l 1 1
substrings of length l were actually w).3 From the computational standpoint, for w and v much shorter
than x, we have that the difference between jxj ¡ jwj 1 1 and jxj ¡ jwvj 1 1 is negligible (this is not
automatically true for any set S of k strings, where we would have jx j ¡ kjwvj 1 1), which means that
the probabilities computed in this way and relative to words that end in the middle of an arc of Tx do not
change, i.e., computing probabilities for strings with a proper locus is enough to know the probabilities of
all substrings.

This notion of empirical probability, however, assumes that every position of x compatible with w

lengthwise is an equally likely candidate. This is not the case in general, as the maximum number of
possible occurrences of one string within another string crucially depends on the compatibility of self-
overlaps. For example, the pattern aba could occur at most once every two positions in any text, abaab

once every four, etc. Compatible self-overlaps for a string z depend on the structure of the periods of z.
A string z has a period w if z is a pre� x of wk for some integer k. Alternatively, a string w is a period
of a string z if z 5 wlv and v is a possibly empty pre� x of w. When this causes no confusion, we will
use the word “period” to refer also to the length or size jwj of a period w of z. A string may have several
periods. The shortest period (or period length) of a string z is called the period of z. A string is trivially
always a period of itself. It is not dif� cult to see that two consecutive occurrences of a word may overlap
only if their distance equals one of the periods of w. Along this line of reasoning, we have

Fact 4.1. The maximum possible number of occurrences of a string w into another string x is equal
to .jx j ¡ jwj 1 1/=juj, where u is the smallest period of w.

If we wanted to compute the empirical probabilities of, say, all pre� xes of a string along the de� nition
of Fact 4.1, we would � rst need to know the periods of all those pre� xes. In fact, by a classical result
of string matching, the period computations relative to the set of pre� xes of a same string can be carried
out in overall linear time, thus in amortized constant time per pre� x. We refer for details and proofs to,
e.g., Aho and Corasick (1975) and Apostolico and Galil (1997). Such a construction may be applied, in
particular, to each suf� x sufi of a string x while that suf� x is being inserted as part of the direct tree
construction. This would result in an annotated version of Tx in overall quadratic time and space in the
worst case.

Perhaps more interestingly, we have that for empirical probabilities de� ned by Fact 4.1 the following
holds.

Theorem 4.2. The set of values P̃ .w/ 5 Âw juj=.jx j ¡ jwj 1 1/ can be computed for all words of x

that have a proper locus in Tx in overall linear time and space.

Proof. Simply compute periods while walking on suf� x links “backward,” i.e., traversing them in their
reverse direction, beginning at the root of Tx and then going deeper and deeper into the tree. This walk
intercepts all nodes of Tx . Correctness rests on the fact that for any word w the periods of w and wr

coincide.

Note, however, that since the period may vary in the middle of an arc, so could the empirical probabilities
computed in this way. This weakens the assumption that the probability of a short word ending in the
middle of an arc is surrogated by that of the shortest extension of that word with a proper locus. Fortunately,
the discussion that led to Fact 2.4 shows that T , being nothing but a subgraph of H connected by rsufs,
only needs the O.n/ probabilities at the O.n/ nodes of H, irrespective of how such probabilities are
de� ned.

5. FINAL REMARKS

Using the known duality between direct and reverse suf� x links, it is natural to revolve our previous
construction around and learn trees for the reverse of the strings in set S. Indeed, the PST tree structure

3This de� nition has a convenient probabilistic quality in that 8l 5 1; 2; : : : ; L
P

jwj5 l P̃ .w/ 5 1.

392 APOSTOLICO AND BEJERANO

itself is but a subtree of the expanded suf� x tree of SR . In such a dual construction, the learning phase is
concerned with building a suitable, reverse-annotated tree of xR while the weighting phase will traverse
this tree.

Another important aspect to be analyzed in a forthcoming paper concerns setting up procedures of
unsupervised learning that can follow some initial training phase. Once some version of the automaton is
constructed from an initial set of positive examples, one wishes to easily learn a new example, i.e., update it
in linear time, in the very same manner all previous examples in S were assimilated one by one. The same
goes for removing a sequence from our pool. Along these lines, we develop a simple incremental learning
scheme. Start off with some initial seed S from which the concept is � rst built. Then, while predicting
over query sequences, one may, when coming across a sequence that, with high likelihood, belongs to the
family, ef� ciently assimilate it into the learned structure before proceeding. Similarly, one may from time
to time go over the list of sequences composing S and check whether, due to the evolution of the concept,
some members no longer � t the concept. These may then be ef� ciently rejected. This is a useful feature
to have when learning from noised or error-prone data, as is our case.

Other closely related bene� ts stem from deliberately abstaining from pruning our trees or presmoothing
the head count vectors implicit in them. These facts allow us to couple the incremental nature presented
above with a simulated annealing schedule (see Kirkpatrick and Gelatt [1983]). Namely, we may start
off with a rather permissive notion of a signi� cant pattern and an appropriate smoothing technique, and
gradually during learning, while we evolve our notion of a family and hopefully put it on � rmer grounds,
we may “cool down” our system by increasing the threshold for signi� cance, while lowering the impact of
smoothing. We may also alter L—now taken as the maximal prediction (but not learning) depth—similarly.

The main theme of this paper has been the optimization of the PST learning algorithm time and space
complexity. This method, recently introduced in the context of Protein family modeling in Bejerano and
Yona (1999), has already shown a potential in becoming a useful tool in tackling this hard problem, as
well as the closely related problem of � nding remote protein homologies. More extensive experimentation,
presented in Bejerano and Yona (2000), further strengthens this notion. However, one of the main hinges
along the way of a computational tool to become practicable by the bioinformatics community is its run
time requirements. Prior to the work presented here, the learning algorithm, implemented in a quadratic
manner, required some 1–2 hours of c.p.u. time on a strong Pentium machine. Preliminary experiments
indicate that much faster algorithms result from implementation of our work. Finally, we believe that the
related notions presented here of empirical signi� cance measures and of concept evolution will open the
way to more fruitful investigations.

ACKNOWLEDGMENTS

The authors would like to thank Andreas Dress and Golan Yona for many useful comments. A.A. would
also like to thank Manfred Eigen and all participants in his 34th Winterseminar for providing a congenial
atmosphere and for stimulating discussions near the slopes of Klosters. G.B. would also like to thank Nir
Friedman for getting him started on ef� ciency matters and Naftali Tishby for enlightening discussions.
A.A. was supported in part by NSF Grant CCR-9700276 and by the Italian Ministry of Research. G.B.
was supported by a grant from the Ministry of Science, Israel.

REFERENCES

Abe, N., and Warmuth, M. 1992. On the computational complexity of approximating distributions by probabilistic
automata, Machine Learning 9, 205–260.

Aho, A.V., and Corasick, M.E. 1975. Ef� cient string matching: An aid to bibliographic search, CACM 18, 333–340.
Apostolico, A., 2000. Notes on learning probabilistic automata, technical report 99-028, Purdue University Computer

Science Department (September ’99), abstracted in Proceedings of DCC 2000, 545–545, Snowbird, IEEE Press.
Apostolico, A., and Bejerano, G. 2000. Optimal amnesic probabilistic automata or how to learn and classify proteins

in linear time and space, Proceedings of RECOMB 2000, 25–32, ACM Press, Tokyo.
Apostolico, A., Bock, M.E., and Lonardi, S. 1999. Linear global detectors of redundant and rare substrings.Proceedings

of DCC 1999, 168–177, Snowbird, IEEE Press.
Apostolico, A., Bock, M.E., Lonardi, S., and Xu, X. 2000. Ef� cient detection of unusual words. J. Comp. Biol. 7(1/2),

71–94.

OPTIMAL AMNESIC PROBABILISTIC AUTOMATA 393

Apostolico, A., and Galil, Z. (eds.) 1997. Pattern Matching Algorithms, Oxford University Press, New York.
Bairoch A., and Apweiler, R. (2000). The SWISS-PROT protein sequence database and its supplement TrEMBL in

2000. Nucleic Acids Research 28(1), 45–48.
Bateman, A., Birney, E., Durbin, R., Eddy, S.R., Howe, K.L., and Sonnhammer, E.L. 2000. The Pfam Protein Families

Database, Nucleic Acids Research 28, 263–266.
Bejerano, G., and Yona, G. 1999. Modeling protein families using probabilistic suf� x trees. Proceedings of RECOMB

99, 15–24, Lyon, ACM Press.
Bejerano, G., and Yona, G., to appear. Variations on probabilistic suf� x trees—A new tool for statistical modeling and

prediction of protein families. Bioinformatics.
Blumer, A., Blumer, J., Ehrenfeucht, A., Haussler, D., Chen, M.T., and Seiferas, J. 1985. The smallest automaton

recognizing the sub-words of a text, Theoretical Computer Science 40, 31–55.
Forchhammet, S., and Rissanen, J. 1995. Coding with partially hidden Markov models, Proceedings of DCC 1995,

92–101, Snowbird, IEEE Press.
Kirkpatrick, S., and Gelatt, C.D., Jr., 1983. Optimization by simulated annealing. Science 220, 671–680.
McCreight, E.M., 1976. A space-economical suf� x tree construction algorithm. Journal of the ACM 23(2), 262–272.
Rissanen, J., 1983. A universal data compression system, IEEE Trans. Inform. Theory 29(5), 656–664.
Rissanen, J., 1986. Complexity of strings in the class of Markov sources, IEEE Trans. Inform. Theory 32(4), 526–532.
Ron, D., Singer, Y., and Tishby, N. 1996. The power of amnesia: Learning probabilistic automata with variable memory

length. Machine Learning 25, 117–149.
Ukkonen, E., 1995. On-line construction of suf� x trees. Algorithmica 14(3), 249–260.
Weiner, P., 1973. Linear Pattern Matching Algorithm. In Proceedingsof the 14th Annual IEEE Symposium on Switching

and Automata Theory, 1–11, IEEE Press, Washington DC.

Address correspondence to:
Alberto Apostolico

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

E-mail: axa@cs.purdue.edu

