
Efficient Exact p -Value Computation
and Applications to Biosequence Analysis

[Extended Abstract]

Gill Bejerano
School of Computer Science & Engineering

Hebrew University
91904 Jerusalem, Israel

jill@cs.huji.ac.il

ABSTRACT
Like other fields of life sciences, bioinformatics has turned to
capture biological phenomena through probabilistic models,
and to analyse these models using statistical methodology.
A central computational problem in applying useful statisti-
cal procedures such as various hypothesis testing procedures
is the computation of p-values. In this paper, we devise a
branch and bound approach to efficient exact p-value com-
putation, and apply it to a likelihood ratio test in a fre-
quency table setting. By recursively partitioning the sam-
ple domain and bounding the statistic we avoid the explicit
exhaustive enumeration of all possible outcomes which is
currently carried by the standard statistical packages. The
convexity of the test statistic is further utilized to confer
additional speed-up.
Empirical evaluation demonstrates a reduction in the com-

putational complexity of the algorithm, even in worst case
scenarios, significantly extending the practical range for per-
forming the exact test. We also show that speed-up greatly
improves the sparser the underlying null hypothesis is; that
computation precision actually increases with speed-up; and
that computation time is very moderately affected by the
magnitude of the computed p-value. These qualities make
our algorithm an appealing alternative to the exhaustive
test, the χ2 asymptotic approximation and Monte Carlo
samplers in the respective regimes.
The proposed method is readily extendible to other tests

and test statistics of interest. We survey several examples
of established biosequence analysis methods, where small
sample size and sparseness do occur, and to which our com-
putational framework could be applied to improve perfor-
mance. We briefly demonstrate this with two applications,
measuring binding site positional correlations in DNA, and
detecting compensatory mutation events in functional RNA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RECOMB’03, April 10–13, 2003, Berlin, Germany.
Copyright 2003 ACM 1-58113-635-8/03/0004 ...$5.00.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Statistical Computing;
J.3 [Life and Medical Sciences]: Biology and Genetics

General Terms
Algorithms

Keywords
p-value, exact test, branch and bound, categorical data, real
extension, frequency tables.

1. INTRODUCTION
Many statistical procedures routinely used in empirical

science require the computation of p-values. A common ex-
ample is the various hypothesis rejection procedures that
compute the p-value of an observed statistic with respect to
the null hypothesis (e.g, [9, 23]).
In many scenarios, given an observation of an outcome

with a test statistic value t, the exact p-value requires us
to sum the probability of all possible outcomes that can as-
sign a test statistic value of t or more. In a finite sample
space, one can directly achieve this by scanning all possible
outcomes. In most real life problems, however, this direct
approach is unfeasible as the number of possible outcomes
is extremely large (typically exponential in the number of
observations in our sample). Thus, in practice, one has to
resort to using either asymptotic approximations or stochas-
tic simulation methods.
In this paper, we develop a branch and bound [5] ap-

proach1 for efficient computation of exact p-values, and ap-
ply it to a likelihood ratio test. Instead of explicitly enu-
merating all possible outcomes and for each one examining
separately whether it passes the test threshold, we attempt
to examine large groups of outcomes together. If they all
pass the test, or if all fail it, we can handle them without
considering each one individually. By careful design, our al-
gorithm performs a systematic examination of all possible
groups to ensure exact computation of p-values. The con-
vexity of the statistic play an important role in our analysis.

1Some fields reserve the term “branch and bound” for opti-
mization problems that seek a single point in the underlying
domain. We use it here in a broader context.

38

We show empirically that this design indeed leads to a
decrease in the computational complexity of performing the
exact test. We achieve this by reducing the complexity of
both the number of cases considered during the computa-
tion, as well as the number of mathematical operations per-
formed to compute the reduced sum. These improvements
lead to orders of magnitudes faster runtime, and greatly ex-
tend the range where an exact test is feasible.
Exact computational inference has received much interest

in Statistics and related experimental fields in recent years
[1], and branch and bound methods have already had several
applications in this context (e.g., [11, 16, 17, 25, 26]). Of
these [17] is closest in objective to the current work. That
work, however, focuses on conditional inference, and is com-
plicated by imposing a network structure over the problem.
As a consequence it cannot be applied to the test we are
interested in. Our mathematical and algorithmic analysis
is more direct and resembles that of [26]. But their sample
space is very different than ours, as is the required analysis.
Small sample, sparse data sets and rare events abound

in bioinformatics. Of these the most appropriate for our
purposes is the analysis of biosequence data (DNA, RNA,
proteins). Searches for patterns in aligned sequence data,
matches of probabilistic profiles within a given sequence,
optimal alignments of sequences and profiles, all pose sta-
tistical tests of categorical data. In many cases, such as the
analysis of known binding sites, little data may be avail-
able. In pattern matching data may be available but in-
herently sparse, or one may want to search through many
combinations, searching for far more rare events than in the
single test scenario. Such is the case when examining bio-
logically correlated positions in aligned sequences and dis-
covering that some combinations are mostly avoided. As
asymptotic approximations are known to be inexact in these
regimes, their use can affect a correct analysis of “twilight
zone” instances, where significance may be missed, and ran-
dom matches may be wrongly pursued. After developing
the method, we point out several established bioinformatics
methods where our approach may be of use, and demon-
strate two applications.

2. A LIKELIHOOD RATIO TEST
Let X be a discrete random variable with a finite set

of possible values, or categories {1, 2, . . . , k}. Let Q be a
multinomial distribution over this set, Q = (q1, q2, . . . , qk).
Through statistical inference we would like to decide be-
tween two hypotheses: either X is distributed according to
Q, or it is not. We call the first our null hypothesis, H0, and
the other its alternative, H1. we will base our decision on a
set of n independent observations of X. A common relevant
example is the composition of a column of multiply aligned
biosequences.
Let Sn = {x1, x2, . . . , xn} denote the sample. Let Tn de-

note its empirical type which counts how many times each
possible value appeared in the sample, Tn = (n1, n2, . . . , nk)
where each ni = |{j|xj = i}|. Denote its empirical probabil-
ity distribution by Pn = (p1, p2, . . . , pk) =

�
n1
n
, n2

n
, . . . , nk

n

�
.

Our aim is to quantify the extent to which the observed
type deviates from the null hypothesis distribution. To this

purpose we define the widely used likelihood ratio statistic

G2 = −2 log λ = −2 log
P (Sn |X ∼ Q)

P (Sn |X ∼ Pn)
= 2

kX
i=1

ni log
ni

nqi

(1)
where λ is the ratio between the likelihood of the data given
H0, and its likelihood given the most likely distribution in
H1 (see, e.g., [9] for more details). Our statistic is thus a
real valued function from the sample space, the collection of
all possible empirical types of size n:2

Tn = {(n1, n2, . . . , nk) | ∀i :ni∈N,
Pk

i=1 ni = n}

We denote by dn = G2(Tn), the value the statistic attains
for a given sample. We can now define a hypothesis test for
the likelihood ratio statistic of a given sample:

1. Compute dn = G2(Tn);

2. Reject H0 iff dn ≥ a predetermined threshold.

Two types of errors are possible in this test. Type I error
concerns rejecting H0 when it is true, and type II error
concerns not rejecting H0 when it is false. The p-value of a
test is defined as the minimal bound on a type I error (or
confidence level) for which we would reject H0 given Sn. For
our decision criterion it boils down to

p-value = Pr(G2(T ′
n) ≥ dn |X ∼ Q) (2)

Thus, the p-value is the probability to draw under H0 a
sample of size n, for which the chosen discrepancy measure
is at least as large as that of our observed sample. This
quantity, however, is not easily obtained.

3. MEASURES OF P -VALUE

3.1 Exact Test
Denote the multinomial probability of drawing a sample

with empirical type Tn, when X ∼ Q, as

Q(Tn) = n!

kY
i=1

qni
i

ni!
(3)

The direct approach to compute (2), taken by the standard
software packages [20, 24], explicitly sums

p-value =
X

T ′
n∈Tn s.t.

G2(T ′
n) ≥ dn

Q(T ′
n) (4)

by examining all possible types of size n. This approach
is only practicable for small sample sizes over a small set
of categories since the number of types examined |Tn| =�

n+k−1
n

�
grows rapidly.3

A theoretically efficient exact alternative computes the
characteristic function of the chosen statistic and then in-
verts it using the fast Fourier Transform (e.g., [2]). However,
its use of trigonometric functions and complex arithmetics
deems it too inaccurate for practical use.

2We did not need the space of all possible samples because
a type is a jointly sufficient statistic of an i.i.d. sample.
3Note, however, that |Tn| ≤ (n+1)k, whereas the alternative
space we could sum over, of all possible samples, is of size
kn, and is typically much larger.

39

G2

assign n3

assign n2

1assign n

(0,0,2) (0,1,1) (0,2,0) (1,0,1) (1,1,0) (2,0,0)

(0,0,−) (0,1,−) (0,2,−) (1,0,−) (1,1,−) (2,0,−)

(0,−,−) (1,−,−) (2,−,−)

(−,−,−)

III
III

3.19 0.42 3.19 3.43 3.43 9.21

T(n)

Figure 1: Exact test recursion tree. We recursively develop all possible types for k=3 and n=2, by assigning
all allowed values to each category in turn. Below the tree we write each type’s G2 statistic for Q = (.1, .45, .45).

3.2 Asymptotic Approximation
Under broad regularity conditions G2 can be shown to

have a well known and easily computed asymptotic form.
Namely, with n → ∞, G2 converges to a χ2 distribution
with k−1 degrees of freedom (see [9]), giving rise to the
widely used chi-squared approximation

p-value
 Pr(χ2
k−1 ≥ dn)

However convergence rate and direction for G2 vary with
the choice of parameters in H0. Thus the approximation is
problematic for small sample size and minute p-values. Big-
ger samples that fall outside the regularity conditions are
also problematic. Such is sparseness in the expected type,
commonly defined as a test where nqi ≤ 5 for at least one
index i. Unfortunately these regions are quite common in
bioinformatics. Correcting factors and improved approxi-
mations of the distribution of G2 offer limited added guar-
anty. Until recently practitioners have mainly used heuris-
tics to circumvent these obstacles, such as merging or ig-
noring sparse categories and then applying the asymptotic
approximation (see, e.g., [23]), suffering potentially harmful
accuracy tolls.

3.3 Simulation
With the advent of computing power, Monte Carlo meth-

ods using computer simulations have become widely prac-
ticed. A simple simulation approach to estimate (2) is to

draw R (pseudo-random) i.i.d. samples, {S(1)
n , . . . , S

(R)
n }, ac-

cording to distribution Q, and approximate

p-value
 | {r |G2(T
(r)
n) ≥ dn} |
R

Theoretical bounds on the variance of the estimate, such
as Hoeffding’s inequality [7], can quantify the amount of
required observations. However, smaller p-values and more
accurate estimates require a great number of samples, of the
order of p-value−1.

4. EFFICIENT EXACT
P -VALUE COMPUTATION

4.1 Motivation
Consider a simple example for k = 3 categories and n =

2 observations. Assume we expect Q = (.1, .45, .45), but
sample Tn = (1, 0, 1). What is the p-value of such a finding?

One way to explicitly enumerate all possible types in or-
der to perform the exact test (4) is through recursion, as
illustrated in Fig. 1. We assign every possible value to n1,
for each we assign every possible value of n2, etc. At the
leafs of the recursion tree we find all 6 possible assignments.
We can calculate G2 for each and accumulate the mass of
those who are at least as big as dn = G2(Tn)
 3.43.
Note, however, that if we had tight upper and lower bounds

on the values G2 obtains in a given sub-tree, we could have
ended our computation after assigning only n1: The maxi-
mal G2 value in sub-tree I , falls below dn and thus this whole
sub-tree can be discarded. While the minimal G2 value in
sub-trees II , III are equal to or exceed dn and the prob-
ability mass of all types they contain can be immediately
accumulated. Thus, in retrospect, we could have examined
only the top 3 nodes, and conclude with the exact answer.
We turn to formalize and extend these intuitions.

4.2 Domain Partitioning
We define a partial assignment of a type of size n, de-

noted τn, as an assignment to a subset of the k variables
(n1, . . . , nk), that can be completed to a valid empirical type
of size n. In the example above {n1 = 0} is a valid partial
assignment. We write it succinctly as τn = (0,−,−), where
‘−’ denotes a yet unassigned type. Formally, the set of all
valid (strictly) partial assignments is

T par
n = { (n1, n2, . . . , nk) | ∀i :ni ∈ {−, 0, 1, . . . , n},

∃i :ni = ‘−’,
X

ni∈N

ni ≤ n }

For a partial assignment τn define I = {i|ni ∈ N} and
I = {i|ni = ’−’} as the sets of assigned, and yet unassigned
categories, respectively, and let

n = n−
X
i∈I

ni, q = 1−
X
i∈I

qi =
X
i∈I

qi, qmin = min
i∈I

{qi}

In our example, for τn = (0,−,−): I = {1}, I = {2, 3},
n = 2, q = .9, and qmin = .45.
Let [τn] be the set of all empirical types which can be

completed from τn,

[τn] = {(n′
1, . . . , n

′
k) ∈ Tn | ∀i ∈ I(τn), n

′
i = ni}

We define the probability of τn, under the null hypothesis,

40

Call format:
p-value = descend(1, (−, . . . ,−))

descend(i, (n1, . . . , nk))

{ p-val = 0

for ni = 0 to n−
Pi−1

j=1 nj

{ τn = (n1, . . . , ni,−, . . . ,−)
if G2

min(τn) ≥ dn

p-val = p-val +Q(τn)
else if G2

max(τn) ≥ dn

p-val = p-val + descend(i+ 1, τn)
}
return(p-val)

}

Description:

Pick an order σ in which to assign the categories (optimized in
Sec. 4.6). Start traversing the recursion tree Aσ from the empty
assignment root node. For each node, or partial assignment τn:

Pruning Criterion 1. If G2
min(τn) ≥ dn, add Q(τn) to the

accumulating probability measure, and do not descend into the
sub-tree rooted in τn.

Pruning Criterion 2. If G2
max(τn) < dn, discard the sub-tree

rooted in τn, and do not descend further.

If neither criterion holds, descend into all sons of τn (all allowed
partial assignments to the next category), and examine each,
recursively.

Figure 2: Efficient exact p-value computation for the likelihood ratio goodness of fit test. For ease of exposition
we assume σ to be the identity permutation in the pseudo-code on the left.

as the sum of the probabilities of all types in [τn],

Q(τn) =
X

Tn∈[τn]

Q(Tn) = n!
q n

n !

Y
i∈I

qni
i

ni!
(5)

For τn = (0,−,−): [τn] = {(0, 0, 2), (0, 1, 1), (0, 2, 0)}, and
Q(τn) = .81.
We define a recursion tree as a structured way to recur-

sively enumerate the set of empirical types Tn: Let σ be
a permutation of size k. The tree that matches σ, denoted
Aσ, is a tree where the root node contains the empty assign-
ment (−, . . . ,−). Extend from it all allowed assignments to
category nσ(1). From each of these extend all allowed assign-
ments to category nσ(2), etc. In Fig. 1 we have the recursion
tree for k = 3, n = 2 that matches the identity permutation.
Note that any such tree has a uniform depth k, and its set
of leafs is exactly Tn. Moreover, the set of leafs in a sub-tree
rooted at any τn is exactly the set [τn], and for every inner
node the set [τn] is a disjoint union of the sets of types held
in its sons.

4.3 Bounding the Statistic
Having defined how to recursively partition the summa-

tion domain, we move to bound the statistic on sub-domains,
by defining

G2
max(τn) = max

Tn∈[τn]
G2(Tn), G2

min(τn) = min
Tn∈[τn]

G2(Tn)

Lemma 1. For any τn ∈ T par
n ,

G2
max(τn) = 2

 X
i∈I

ni log
ni

nqi
+ n log

n

nqmin

!
(6)

G2
min(τn) ≥ 2

 X
i∈I

ni log
ni

nqi
+ n log

n

nq

!
(7)

Proof. Let τn ∈ T par
n , and let I denote the indices of

its yet unassigned categories. Consider the extension of G2

over the set of all non-negative real types that sum to n.
Differentiating G2 with respect to the unassigned counts ni,
we get that the Hessian of G2 is a diagonal matrix,

∀i, j ∈ I :

�
∂2G2

∂ni∂nj

�
= δij

2

ni

where δij is Kronecker’s delta function. Since ∀i : ni ≥ 0,
the Hessian is positive definite, and we conclude that G2 is
strictly convex over its domain (see [19], p. 27).
To find the minima of G2, we use Lagrange multipliers.

We define the Lagrangian

J = 2
kX

i=1

ni log
ni

nqi
− γ

0
@X

i∈I

ni − n

1
A

By solving ∇J =0 we obtain the solution ∀i∈ I : ni =
qi
q
n.

Since G2 is strictly convex, this interior point must be a
global minimum (see [19], p. 242). In general this will not
yield a valid integer assignment but it does bound G2

min

from below, obtaining (7).
Since G2 is convex, it achieves its maximum value in ex-

treme points of the allowable region (see [19], p. 343). That
is, on the vertices of the set of possible assignments. Recall
that the vertices are the assignments where all the remaining
counts are assigned to one category. Now, let l ∈ I attain
the least yet unassigned probability, ql = qmin. Clearly,

∀i ∈ I : log
n

nql
≥ log

n

nqi

Thus, assigning all n remaining counts to nl, is the maximal
value of G2 in [τn], yielding (6).

To simplify notations we will next use the right side of
(7) as the value of G2

min with the understanding that it
can be replaced by a tighter bound or indeed by the exact
minimum, when either is easy to obtain.

4.4 Algorithm
We will now utilize the domain partitioning as the “branch”

step. The easily computable bounds on the statistic in a
given partition, and probability measure of the partition
comprise the “bound” step. The resulting algorithm is shown
in Fig. 2.
Note that the p-value of a given test depends on the ob-

served sample Sn only through the magnitude of its statistic
dn. The above algorithm can thus be easily altered to simul-
taneously retrieve the p-values of several observed samples
of the same size in a single traversal, by tracking in each
step only those values which have yet to be resolved. This

41

dn

q
i

n
minq + q

i

n

nG (T)
2

G2
max

G2
min

G
2

ni

q
i n

i
q + q

discarddescend add

ad
d

de
sc

en
d

0 α δγβ

Figure 3: Faster recursion step at the node level. We plot the values of G2
max and G2

min vs. all possible real
assignments to the next category ni. A threshold dn can intersect each of the two convex curves at most
twice. The four intersection values, denoted α − δ define five groups of integer ni values. All values in each
group are equally treated: values between {0, . . . , �α�} and {�δ�, . . . , n} are added to the accumulating p-value
(pruning criterion 1), values between {�β�, . . . , �γ�} are discarded (pruning criterion 2), and the rest need to
be further descended.

situation is common when performing multiple combination
tests. The above observation is also an easy starting point
to critical value computation and generation of a look-up
table in a single traversal.

4.5 Faster Variant
Consider the basic step in Fig. 2 which iterates over all

allowed values of ni, the assignment to the next category.
If the changes in G2

max and G2
min as a function of ni have

simple mathematical forms, we could handle groups of ni

values without examining each separately.
Let τn be a partial type at some level i − 1, which needs

to be descended (i.e., G2
min(τn) < dn ≤ G2

max(τn)). De-

note, with a slight abuse of notation, n = n−
Pi−1

j=1 nj , q =Pk
j=i+1 qj and qmin = min{j=i+1,...,k} qj . We need to as-

sign to the next category ni all possible values {0, 1, . . . , n},
and examine G2

max, G
2
min for each. Since both bounds (6),

(7) have the same form, as a function of ni, we can write
compactly:

G2
bound(ni) =

2

i−1X
j=1

nj log
nj

nqj
+ ni log

ni

nqi
+ (n− ni) log

n− ni

nq�

!

where G2
bound = G2

max for q� = qmin and G2
bound = G2

min for
q� = q. It is easy to verify thatG2

bound is strictly convex in ni

when ni ∈ [0, n], and obtains its minimum at n� = qi
qi+q�

n

(which is in general fractional). Since by definition qmin ≤ q
the “swoosh”-like shape of the two bounds as a function of ni

is as shown in Fig. 3.4 Clearly, any threshold dn can intersect
either curve at most twice. The four (or less) intersection

4Whereas the vertical ordering of points G2
max(ni = n) =

G2
min(ni =n), G2

max(ni =0) and G2
min(ni =0) is inverse to

that of qi, qmin and q, respectively.

values, denoted α − δ in Fig. 3, define five (or less) groups
of ni values. All values in each group are equally treated.
Based on our analysis of G2

bound we can now perform four
binary searches (see, e.g., [5]), to elucidate �α�, �β�, �γ�
and �δ�, by searching for dn with G2

max and G2
min over their

respective {0, . . . , �n��} and {�n�� + 1, . . . , n} (which are
all sorted). By identifying the groups of ni values that
require equal treatment, we save the cost of evaluating the
bounds for each possible choice of ni. More precisely, we
have reduced the examination work performed at each node
from Θ(n) in Fig. 2 to Θ(log n).
One further improvement is made easy within the Convex

procedure. Reconsider Fig. 3. If more than half the types
need to be added to the accumulating p-value mass, we can
instead add the probability mass of the father node, and
subtract those of the complementary set of types to achieve
the same increment using fewer mathematical operations.
Thus, while performing exactly the same recursive calls

as the algorithm of Fig. 2, this variant reduces the amount
of time spent in each invocation of the procedure.

4.6 Computational Complexity
Five computational procedures were implemented in C,

and run on a Pentium III 733MHz Linux machine, employing
further practical speed-ups (see Appendix):

• Direct - exact computation by recursive enumeration
of all types, as described in Sec. 3.1. Equivalent pro-
cedures are performed by SAS [20] and StaXact [24].

• Pruned - exact computation by recursive enumeration
with the two pruning criteria of Sec. 4.4.

• Convex - same as Pruned but exploits the convexity of
the bounds on G2, as in Sec. 4.5.

• χ2 - the chi-squared approximation discussed in Sec. 3.2
(computed as in [18]).

42

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

1

10
2

10
3

10
4

10
5

10
6

n

ru
nt

im
e

[m
ili

se
c]

Q=[.25 .25 .25 .25] p−value=0.05

Θ(n3)

Θ(n2)

Exact Direct
Exact Pruned
Exact Convex

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

2

10
3

10
4

10
5

10
6

n

re
cu

rs
iv

e
ca

lls

Q=[.25 .25 .25 .25] p−value=0.05

Θ(n2)

Θ(n)

Exact Direct
Exact Convex/Pruned

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

3

10
4

10
5

10
6

10
7

10
8

10
9

n

lo
g

op
s

Q=[.25 .25 .25 .25] p−value=0.05

Θ(n3)

Θ(n2)

Exact Direct
Exact Pruned
Exact Convex

(a) Runtime (b) # of Recursive calls (c) # of Additions

Figure 4: Performance evaluation of the exact algorithms. All three graphs plot the cost of p-value compu-
tation for Q = (.25, .25, .25, .25) with different choices of n. The x-axes denote the number of samples, n. The
y-axis denotes computation cost, using three different performance measures. For each n, the choice of dn is
set such that the resulting p-value is 0.05. Polynomials of the lowest acceptable degree are fitted against our
measurements, and their degree is noted. Sublinear complexity in the sample space is evident even for this
uniform Q which we show in Fig. 5 to be our worst case in terms of performance.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

500

1000

1500

2000

2500

3000

3500

4000

4500
k=4 n=10000 p−value=0.05

H(Q) [nat]

ru
nt

im
e

[m
ili

se
c]

Exact Convex

a [.0001 .0001 .0001 .9997]
b [.25 .25 .25 .25]
c [.07 .135 .135 .66]
d [.0001 .1599 .33 .51]

a

b

d

c

Figure 5: The correlation between the entropy of Q (x-axis)
and the runtime of computing p-values (y-axis). The points
correspond to 2000 different Q’s picked uniformly from the
space of all four categories distributions. Four points are
labeled: (a),(b) at the two extremes of distribution entropy
values, and (c),(d) that have equal entropies and serve to
demonstrate the speed-up effect caused by the sparseness of
(d). Extrapolating from Fig. 4 we note that even our slowest
result, point (b), computed in 4 seconds using Convex, would
require about 55 hours using Direct.

3 4 5 6 7 8

n=100 p−value=0.05

k

ru
nt

im
e

[m
ili

se
c]

100

101

102

103

104

105

106

107

108

Convex − sparse Q
Convex − uniform Q
Direct − any Q

Figure 6: Effect of the number of categories (x-
axis) on the runtime of the algorithm (y-axis).
The figure compares the increase in runtime for
Direct and Convex when computing a p-value of 0.05
with n = 100. Convex computation time ranges
between that for sparse Q’s (here n·qi = 1 for all
i �= k) and for a uniform Q. For Direct all Q’s
require about the same computation time.

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
0

10
2

10
4

10
6

10
8

10
10

10
12

Q = [.001 .333 .333 .333] n=1000

exact p−value

ru
nt

im
e

[m
ili

se
c]

Exact Convex
Simulation approx.

Figure 7: Computation of small p-values. For
Q = (0.001, 0.333, 0.333, 0.333) we plot the exact p-
value of the rounded types (i, 1000−i

3
, 1000−i

3
, 1000−i

3
)

for i = 5, . . . , 15, (x-axis, right to left). For each
we plot the actual runtime of Convex, and an ex-
trapolation of the amount of time it would take
Simulation to draw p-value−1 samples in order to
achieve an acceptable approximate value (y-axis).

43

• Simulation - the Monte-Carlo sampler approximation
from Sec. 3.3.

An extensive evaluation of the different algorithms has
been carried out, but due to space limitations will await the
full version. We summarize our major findings:

For fixed k and growing n, |Tn|
 nk−1

(k−1)!
. In Fig. 4 we

measure the performance of the first three exact algorithms
in such a scenario. Using polynomial fitting we observe that
the complexity decreases by one degree in all measured cat-
egories: runtime, recursive calls, and mathematical opera-
tions. As we next show in Fig. 5 the uniform scenario we
examine here is the one where our speed-up is least effec-
tive. And yet, even there it lowers the polynomial complex-
ity rather than just improve the constants. Other tests we
have performed indicate that the degree gap in fact grows
in our favor for larger k.
The summation of whole sub-trees we perform via (5) is

also much more accurate in terms of machine precision than
the exhaustive enumeration Direct performs, that sums all
types within every sub-tree. Thus, our algorithm is both
more efficient and more precise than the one in use today.
And in general the more efficiently it runs, the more com-
plete sub-trees it sums, and the more precise its end result.
For a non-uniform null hypothesis Q, the preferred traver-

sal order σ in Convex appears to always be from smallest qi

to largest. We have observed this behaviour in every one
of the many diverse scenarios examined, and will shortly of-
fer a plausible explanation for it. All subsequent reported
results for Convex adopt this traversal scheme.
As Fig. 5 shows, speed-up was found to increases the lower

the entropy [6] of the null distribution is, and among equals
it further increases the sparser Q is. This makes our algo-
rithm a preferred alternative to the asymptotic χ2 which is
known to be inaccurate in this regime.
Tying the last two results together, note that even for

relatively small resulting p-values, most types are usually
summed in (4). The value of G2 for all these exceeds dn. By
expanding lower qi values first we add bigger nilog

ni
nqi

terms

first into the accumulating G2 value, and thus cross the dn

threshold sooner, to invoke pruning criterion 1 earlier on.
This speedup becomes all the more evident the more small
qi values there are in sparse null distributions.
Despite these desirable properties, as the number of cat-

egories k in a test increases, so does the sample space, and
with it, inevitably, our runtime. In Fig. 6 we demonstrate
this effect by comparing for a growing k our best runtime,
for a sparse Q = (1

n
, . . . , 1

n
, n−k+1

n
); our worst, when Q is

uniform; and the runtime of Direct, which is about the same
for all null distributions.
But while the tests performed above all focus on the ubiq-

uitous 0.05 threshold, in many cases where data abounds,
especially in molecular biology, we are interested in running
many different test combinations, searching for the most sur-
prising of these. However, the more tests one performs the
more likely it is to find spurious hits with seemingly low
p-values. The threshold for interest is thus significantly low-
ered in these scenarios, and searches for p-values of the order
of 10−6 or even 10−10 are not uncommon. A sampler such
as the Monte Carlo Simulation will need to sample inversely
proportional to the p-value it tries to measure. Here we find
another useful property of our exact algorithm. As exempli-
fied in Fig. 7 computation time for Convex is very moderately

affected by the size of the resulting p-value, allowing it to
compute exact values in regimes where a sampler run for a
comparable amount of time would yield unacceptably high
estimation variance.

5. APPLICATIONS

5.1 Brief Survey
We highlight several established tools in biosequence anal-

ysis where our method may improve performance.
In Consensus [15] significant patterns are sought in aligned

sequences. They define a likelihood ratio statistic and mea-
sure the departure of an alignment from a background distri-
bution. Acknowledging that χ2 approximation is inaccurate
in their regime they resort to large deviation approximation
and intensive numerical simulation to achieve an approxi-
mate p-value. As columns are treated independently it ap-
pears that our method could be applied per-column, to later
combine the resulting p-values, e.g., as in [3].
When evaluating the matches of a profile to a given se-

quence, the Blocks+ curators [13] score the given profile
against many proteins in order to set a significance thresh-
old for it. While EMATRIX [27] recursively computes a
quantile function, using calculations which in retrospect are
similar to ours, to achieve the same goal much more rapidly.
It would be interesting to apply our method to this problem
and compare.
The profile aligner IMPALA [21] uses a scaled asymptotic

approximation to fit an extreme value distribution to their
scores. Recently, in [28] a likelihood ratio statistic was used
to compare column compositions between two profiles in or-
der to optimally align them. The significance of each score
was obtained indirectly, and yet the method was shown to
surpass IMPALA, especially for remote “twilight zone” ho-
mologies. Our method can be applied here to find the exact
optimal match.
Finally, in [4] it was recently demonstrated, through mu-

tation and gene expression measurements, that nucleotides
in binding sites can be strongly correlated. This phenomena
can be measured in sequence alignments, using a variant of
our test, as we next demonstrate.

5.2 Binding Site Correlations
The RNA polymerase responsible for transcription initia-

tion in Escherichia coli has two functional components: the
core enzyme and the sigma factor. E. coli has several differ-
ent σ-factors, each conferring to the polymerase specificity
to different promoter sequences [12].
We have chosen a set of nitrogen regulated gene promot-

ers, controlled by σ54, from the PromEC database [14]. The
set was aligned according to known promoter signatures to
create an alignment block. Every pair of columns in the
block was subjected to a test of independence: The distri-
bution of bases in each column was computed separately,
{pA , pC , pG , pT } for column i, and {qA , qC , qG , qT } for col-
umn j. The null hypothesis claimed that the expected distri-
bution of pairs of bases is that of two independent columns,
i.e., fAC the expected frequency of observing A in column
i and C in column j is pAqC . Our algorithm was used to
assign an exact p-value to the actual counts in each pair of
columns. These were then sorted in increasing order. In
principle, now must follow a correction term for performing
multiple tests (such as Bonferroni’s). For our purposes it

44

rank exact p-value χ2 approx. pos. observed combinations missing combinations

1 0.016 0.002 (1,2) 7AA, 2TT AT, TA
2 0.051 0.006 (5,24) 4TA, 3CT, 1CC, 1GC TT, CA
3 0.153 0.017 (1,22) 6AT, 2TA, 1AA TT

Table 1: E. coli promoter positional independence test. The σ54 results are derived from an alignment
of 9 sequences. The consensus of the examined block of 24 columns is N(5)-TGGCAC-N(5)-TTGC-N(4).
Positions are given with respect to the pattern, staring from 1. In the observed combinations column, the
entry “4TA” denotes 4 sequences with T in pos. 5 and A in pos. 24. Missing combinations refers to highly
expected combinations according to the independence assumption. The χ2 degrees of freedom were corrected
to account for parameter estimation from the data (see [23]).

suffices to examine the top three scoring p-values, reported
in Table 1.
The top matches occur outside the consensus sequence.

These flanking regions, while much less conserved, are known
to play an important role in promoter recognition, and their
analysis poses a challenge, partly resolved by such tests.
Also note the inaccuracy of the χ2 approximation, which
in most analyses would have wrongly highlighted the third
ranking combination, as well as others further down the list.

5.3 Compensatory Mutations
Homologous biosequences are known to sometimes un-

dergo compensatory mutation events. Such is often the
case in functional RNA, where matching base pairs form hy-
drogen bonds that stabilize the RNA tertiary structure [8].
When a base undergoes mutation that disrupts the comple-
mentarity of a paired base, a mutation in the second base
to regain complementarity is usually favoured energetically.
Searching to find such events we examined the family of

Vault RNAs. These are part of the vault ribonucleoprotein
complex, encoding a complex of proteins and RNAs sus-
pected to be involved in drug resistance [22]. A 146 base-
long gapped alignment of 16 family members was taken from
the Rfam database [10, ref. RF00006]. Using the indepen-
dence test described above, the 6 top ranking column pairs
were found to be all combinations of columns (4,5,142,143).
The observed combinations in these were 9CAUG, 7UGCA.
The complementarity of cols. (4,143) and (5,142) in both
combinations, and lack of any other combination suggest a
compensatory event of two interacting base-pairs. This in-
formation can be used to guide or validate RNA structure
prediction as well as phylogenetic reconstruction algorithms
(see [8]).
To further demonstrate the inaccuracy of the χ2 approx-

imation in such tests we show in Fig. 8 the relative error
of this approximation compared to the exact values, for all
vault RNA tests resulting in p-values in the critical range –
where wrong values lead to false rejection or acceptance.

6. DISCUSSION
In this paper we show how to perform a branch and bound

efficient computation of exact p-values for a goodness of fit
likelihood ratio test, utilizing the convexity of our test statis-
tic. We empirically showed that this approach reduces the
computational complexity of the test, as well as improve
precision over the exhaustive approach in use today. Other
useful properties of our approach include increased speed-up
gain for sparse null hypotheses, very moderate increase in
run time the smaller the resulting p-value is, and the ability
to compute p-values for several thresholds simultaneously.

Our method thus significantly extends the practicable range
of the exact test for small samples, sparse nulls, and small
p-values, all quite common in bioinformatics.
It is clear that the same methodology can be adopted to

other tests and test statistics of interest. For example, the
widely used Pearson X2 statistic is also convex, and can un-
dergo the very same treatment. Such appears to be the case
for the established bioniformatics tools surveyed in Sec. 5.
Of these perhaps the most promising are the methods which
combine several p-values through dynamic programming or
related methods to arrive at an optimal configuration. We
have also demonstrated how such tests can examine bio-
logical hypotheses, such as the spread of binding site cor-
relations, and guide or help evaluate algorithms for RNA
structure prediction and phylogenetic inference.
A promising direction to further improve runtime involves

the machine-precision accuracy of our procedure. In prac-
tice, we often only require a certain amount of accuracy
or just wish to bound the p-value below a required thresh-
old. It is fairly straightforward to perform further pruning
in these cases that allows to compute approximate p-values
even faster. Such approximations can then provide tight pre-
defined control on the tradeoff between accuracy and run-
time. They may also allow us to extend the general method
to infinite and continuous sample spaces.
Finally, in this paper we focused on a particular depth-

first traversal scheme over types. This enumeration is easy
to define, but is not necessarily optimized for the task. A
potential way of performing more efficient computation is
by a breadth-first traversal of partial assignments that cor-
responds more naturally to the structure of the distribution
over types, as the later is known to decay exponentially fast
as a function of the distance from the null hypothesis (see
[6]). This direction may lead to a further reduction in time
complexity of the exact computation.

7. ACKNOWLEDGMENTS
The author is indebted to Nir Friedman and Naftali Tishby

for valuable discussions, and to the referees for constructive
comments. M.N. and Y.F. are acknowledged for upsetting
the author into initial interest in the subject matter. This
research was supported by a grant from the Ministry of Sci-
ence, Israel.

8. REFERENCES
[1] A. Agresti. Exact inference for categorical data:

recent advances and continuing controversies. Statist.
Med., 20:2709–2722, 2001.

45

10
−3

10
−2

10
−1

−100%

−95%

−90%

−85%

−80%

−75%

exact p−value
%

 e
rr

or
 o

f χ
2 a

pp
ro

xi
m

at
io

n

 approx − exact
% error = 100 −−−−−−−−−−−−−−

 exact

Figure 8: Comparison of the exact and approximate p-values of the vault RNA data. For all column pair
combination tests with resulting exact p-values in the critical range between 0.001 and 0.1, we plot the exact
p-value (x-axis) against the relative error of a χ2 approximate value for the same test (y-axis). The corrected
approximation (as in Table 1) is shown to under-estimate the p-value considerably.

[2] J. Baglivo, D. Olivier, and M. Pagano. Methods for
exact goodness of fit tests. J. American Statistical
Assoc., 87(418):464–469, 1992.

[3] T. L. Bailey and M. Gribskov. Combining evidence
using p-values: application to sequence homology
searches. Bioinformatics, 14(1):48–54, 1998.

[4] M. L. Bulyk, P. L. Johnson, and G. M. Church.
Nucleotides of transcription factor binding sites exert
interdependent effects on the binding affinities of
transcription factors. Nucleic Acids Res.,
30(5):1255–1261, 2002.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to algorithms. MIT, 1990.

[6] T. M. Cover and J. A. Thomas. Elements of
information theory. Wiley, 1991.

[7] L. Devroye, L. Györfi, and G. Lugosi. A probabilistic
theory of pattern recognition. Springer, 1996.

[8] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison.
Biological sequence analysis. Cambridge, 1998.

[9] W. J. Ewens and G. R. Grant. Statistical methods in
bioinformatics: an introduction. Springer, 2001.

[10] S. Griffiths-Jones, A. Bateman, M. Marshall,
A. Khanna, and S. R. Eddy. Rfam: an RNA family
database. Nucleic Acids Res., 31(1):439–441, 2003.

[11] D. J. Hand. Branch and bound in statistical data
analysis. Statistician, 30(1):1–13, 1981.

[12] J. D. Helmann. Promoters, sigma factors, and variant
RNA polymerases. In S. Baumberg, editor,
Prokaryotic Gene Expression, chapter 3. Oxford, 1999.

[13] S. Henikoff, J. G. Henikoff, and S. Pietrokovski.
Blocks+: a non-redundant database of protein
alignment blocks derived from multiple compilations.
Bioinformatics, 15(6):471–479, 1999.

[14] R. Hershberg, G. Bejerano, A. Santos-Zavaleta, and
H. Margalit. PromEC: An updated database of
Escherichia coli mRNA promoters with experimentally
identified transcriptional start sites. Nucleic Acids
Res., 29(1):277, 2001.

[15] G. Z. Hertz and G. D. Stormo. Identifying DNA and
protein patterns with statistically significant

alignments of multiple sequences. Bioinformatics,
15(7-8):563–577, 1999.

[16] C. R. Mehta and N. R. Patel. A network algorithm for
performing Fisher’s exact test in r × c contingency
tables. J. American Statistical Assoc.,
78(382):427–434, 1983.

[17] C. R. Mehta, N. R. Patel, and L. J. Wei. Constructing
exact significance tests with restricted randomization
rules. Biometrika, 75(2):295–302, 1988.

[18] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery. Numerical recipes in C: the art of
scientific computing. Cambridge, 2nd edition, 1993.

[19] R. T. Rockafellar. Convex analysis. Princeton, 1970.

[20] SAS 8. STAT user’s guide. SAS Institute, 1999.

[21] A. A. Schaffer, Y. I. Wolf, C. P. Ponting, E. V.
Koonin, L. Aravind, and S. F. Altschul. IMPALA:
matching a protein sequence against a collection of
PSI-BLAST-constructed position-specific score
matrices. Bioinformatics, 15(12):1000–1011, 1999.

[22] G. L. Scheffer, A. C. Pijnenborg, E. F. Smit,
M. Muller, D. S. Postma, W. Timens, P. van der Valk,
E. G. de Vries, and R. J. Scheper. Multidrug
resistance related molecules in human and murine
lung. J. Clin. Pathol., 55(5):332–339, 2002.

[23] R. R. Sokal and F. J. Rohlf. Biometry. Freeman, 3rd

edition, 1995.

[24] StatXact 5. User manual. Cytel, 2001.

[25] M. van de Wiel. The split-up algorithm: a fast
symbolic method for computing p-values of
distribution-free statistics. Computational Statistics,
16:519–538, 2001.

[26] W. J. Welch and L. G. Gutierrez. Robust permutation
tests for matched-pairs designs. J. American
Statistical Assoc., 83(402):450–455, 1988.

[27] T. D. Wu, C. G. Nevill-Manning, and D. L. Brutlag.
Fast probabilistic analysis of sequence function using
scoring matrices. Bioinformatics, 16(3):233–244, 2000.

[28] G. Yona and M. Levitt. Within the twilight zone: a
sensitive profile-profile comparison tool based on infor-
mation theory. J. Mol. Biol., 315(5):1257–75, 2002.

46

APPENDIX

A. NOTES FOR THE PRACTITIONER
Several computational tips which speed-up runtime be-

yond the didactic code of Fig. 2:

• For reasons of machine accuracy we did not sum Q(τn)
terms (which can be very small) to obtain the exact p-
value but rather collected the logs of these quantities.
For this purpose a useful transformation from x̃=log x,
ỹ=log y to z̃=log (x+ y) is

z̃ = x̃+ log (1 + exp (ỹ − x̃))

which saves an expensive exponentiation operation, as
well as being more accurate since by assuring that x̃ ≥ ỹ
the log operation is bounded between zero and log 2.

• Since we will be repeatedly evaluating logQ(τn), G
2
max(τn)

and G2
min(τn) we have prepared in advance look-up ta-

bles for {log q1, . . . , log qk}, {log 1, . . . , log n}, {log 1!,
. . . , log n!}, {log q1, . . . , log qk} and {min1, . . . ,mink}.
The latter two tables are prepared in correspondence
with the assignment order σ, and are used as q and the
index of qmin, respectively.

• Common partial sums in the above equations have been
passed down the recursion tree to save re-computing
them over and over.

• The log and exp operations in the above equation can
be replaced by a look-up table of log (1 + e−z) values for
z≥ 0. Linear interpolation between each two sampled
values yields a very good fit (similarly for subtraction
when z≥0.02), with loss of accuracy not far from ma-
chine precision. In Sec. 4.6 this would entail a further
3-fold reduction in runtime over reported results.

• Finally, note that in a multi-CPU or network environ-
ment, the algorithm is trivially parallelizable.

47

